【揭秘Hadoop背后的秘密!】HDFS读写流程大曝光:从理论到实践,带你深入了解Hadoop分布式文件系统!

简介: 【8月更文挑战第24天】Hadoop分布式文件系统(HDFS)是Hadoop生态系统的关键组件,专为大规模数据集提供高效率存储及访问。本文深入解析HDFS数据读写流程并附带示例代码。HDFS采用NameNode和DataNode架构,前者负责元数据管理,后者承担数据块存储任务。文章通过Java示例演示了如何利用Hadoop API实现数据的写入与读取,有助于理解HDFS的工作原理及其在大数据处理中的应用价值。

Hadoop 分布式文件系统(HDFS)是 Hadoop 生态系统中的核心组件之一,旨在提供高吞吐量的数据访问能力,非常适合大规模数据集的分布式存储。本文将详细探讨 HDFS 中的数据读写流程,并通过示例代码展示具体的操作步骤。

HDFS 的设计目标是支持海量数据的存储和处理,因此其架构中包含 NameNode 和 DataNode。NameNode 负责元数据管理,包括文件系统的命名空间管理和客户端请求的处理。DataNode 则负责数据块的存储和检索,每个数据块默认大小为 128MB(在 Hadoop 2.x 版本中)。

写入流程

当客户端向 HDFS 写入数据时,流程如下:

  1. 客户端发起写入请求给 NameNode,请求创建一个新的文件。
  2. NameNode 根据文件系统的命名空间信息检查文件是否已存在,若不存在,则返回可以写入的响应,并指示客户端将数据发送给哪些 DataNode。
  3. 客户端接收到响应后,开始向第一个 DataNode 发送数据,并启动一个数据流管道。数据按照预设的副本策略被复制到其他 DataNode 上。
  4. 数据写入过程中,每个 DataNode 在接收到数据后会向发送方确认收到数据。最后一个 DataNode 向客户端发送确认消息。
  5. 当所有副本都被成功写入后,客户端通知 NameNode 文件写入完成。

示例代码

以下是一个简单的 Java 示例,展示如何使用 Hadoop API 向 HDFS 写入数据:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.IOException;
import java.nio.ByteBuffer;

public class HDFSWriter {
   
    public static void main(String[] args) throws IOException {
   
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);

        Path filePath = new Path("/hdfs/input.txt");

        // 创建文件
        fs.create(filePath).close();

        // 写入数据
        try (FileSystem fileSystem = FileSystem.get(conf)) {
   
            fileSystem.append(filePath).write(ByteBuffer.wrap("Hello, HDFS!".getBytes()));
        }

        // 关闭文件系统
        fs.close();
    }
}

读取流程

当客户端从 HDFS 读取数据时,流程如下:

  1. 客户端向 NameNode 请求读取文件。
  2. NameNode 返回文件的元数据信息,包括文件块的位置信息。
  3. 客户端直接与 DataNode 通信,获取数据块。
  4. 如果客户端与 DataNode 之间的网络连接速度较慢,NameNode 可能会选择离客户端最近的 DataNode 提供数据服务。
  5. 客户端从 DataNode 读取数据块,并进行拼接以恢复原始文件。

示例代码

以下是一个简单的 Java 示例,展示如何使用 Hadoop API 从 HDFS 读取数据:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class HDFSReader {
   
    public static void main(String[] args) throws IOException {
   
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);

        Path filePath = new Path("/hdfs/input.txt");

        // 读取文件
        try (FileSystem fileSystem = FileSystem.get(conf);
             BufferedReader reader = new BufferedReader(new InputStreamReader(fileSystem.open(filePath)))) {
   
            String line;
            while ((line = reader.readLine()) != null) {
   
                System.out.println(line);
            }
        }

        // 关闭文件系统
        fs.close();
    }
}

总结

通过上述示例,可以看出 HDFS 的读写操作是高度分布式的,它通过 NameNode 和 DataNode 的协同工作来实现数据的可靠存储和快速访问。了解这些底层机制对于优化 Hadoop 应用程序的性能至关重要。随着大数据技术的发展,HDFS 仍然是处理大规模数据集的重要工具之一。

相关文章
|
2月前
|
人工智能 安全 应用服务中间件
阿里巴巴 MCP 分布式落地实践:快速转换 HSF 到 MCP server
本文分享了阿里巴巴内部将大规模HSF服务快速转换为MCP Server的实践经验,通过Higress网关实现MCP协议卸载,无需修改代码即可接入MCP生态。文章分析了MCP生态面临的挑战,如协议快速迭代和SDK不稳定性,并详细介绍了操作步骤及组件功能。强调MCP虽非终极解决方案,但作为AI业务工程化的起点具有重要意义。最后总结指出,MCP只是AI原生应用发展的第一步,未来还有更多可能性值得探索。
846 48
|
4月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
360 70
|
2月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
531 57
|
2月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
296 35
|
3月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
4月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
279 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
9月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
385 6
|
4月前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
6月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
264 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
6月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
360 7

热门文章

最新文章