【分布式计算框架】HDFS常用操作及编程实践

简介: 【分布式计算框架】HDFS常用操作及编程实践

HDFS常用操作及编程实践

一、实验目的

  • 熟悉HDFS的常用shell命令
  • 配置eclipse编程环境
  • 编程实现创建目录、上传文件、显示文件内容功能
  • 创建一个约1.6M大小的文件,然后设置块大小(1048576)上传文件
  • 编程实现按行读取HDFS文件,显示文件块信息,实现缓存功能

二、实验环境

  • centos 6.5
  • VMware Workstation

三、实验内容

先关闭集群

stop-dfs.sh

zkServer.sh stop

下次启动只要执行

start-dfs.sh

api客户端设置

1.解压hadoop-2.6.5.tar.gz ,hadoop-2.6.5-src.tar.gz 两个压缩文件 到一个干净的目录,比如d:\hadoop\usr

2.再创建hadoop-lib目录,将hadoop-2.6.5/share/hadoop各个目录里的jar包拷贝至这里(httpfs,kms除外)

3.配置windows环境变量 :

HADOOP_HOME=D:\hadoop\usr\hadoop-2.6.5

HADOOP_USER_NAME=root

path=%HADOOP_HOME%\bin;

4.将老师提供的bin目录的文件复制到d:\hadoop\usr\hadoop-2.6.5\bin(覆盖)

5.将bin里的hadoop.dll拷贝到c:\windows\System32

6.解压 eclipse-mars.rar,将hadoop-eclipse-plugin-2.6.0.jar(可视化插件)拷贝到d:\eclipse-mars\mars\plugins

  1. 启动hadoop (node01)

  1. 启动eclipse,project Explorer里有DFS Locations(如果没有出现,选择Java EE),小象图标(可视化控件)

  2. 配置eclipse:

菜单:

window-preferences-hadoop map/reduce

hadoop installation directory:d:\hadoop\usr\hadoop-2.6.5

new hadoop location(定位器)

location name: 任意取

DFS Master (不选 use M/R Master host)

Host:node01 #active的节点

port:8020(50070是浏览器的端口)

实验(创建一个目录/user/root)

  1. 新建一个Java项目

  2. 导入Jar包:

菜单:window-preferences-java-build path-user libraries

自定义一个jar包(比如hadoop_jars)

菜单:add external JARS

选择D:\hadoop\usr\hadoop-lib所有jar包

项目里导入hadoop_jars包 //右击项目名-build path-configure build path-java build path-libraries-add library-use library-hadoop_jars

项目里导入jUnit 4 //右击项目名-build path-configure build path-java build path-libraries-add library-jUnit 4

  1. 导入hdfs-site.xml,core-site.xml配置文件到项目的src目录(使用xftp传输)



  2. 新建一个class
Test20191909/src
com.sxt.hdfs.test
TestHDFS

四、出现的问题及解决方案

  1. jdk版本太高,导致eclipce安装失败,方案:重新安装低版本的jdk

五、实验结果

  1. 浏览器查看上传文件块信息截图

  1. HDFS命令,程序源代码,程序运行结果截图

代码:

Configuration conf=null;
FileSystem fs=null;

@Before
public void conn() throws IOException{
    conf=new Configuration();
    fs=FileSystem.get(conf);
}

@Test
public void mkdir() throws IOException{
    Path path=new Path("/mytemp");
    if(fs.exists(path))
    fs.delete(path,true);

    fs.mkdirs(path);
}

@Test
public void uploadFile() throws IOException{

    // 文件的上传路径
    Path path=new Path("/mytemp/jk.txt");
    FSDataOutputStream fdos=fs.create(path);

    // 拿到磁盘文件
    InputStream is=new BufferedInputStream(new FileInputStream("D:\\hadoop\\usr\\Test\\hadoop实操.txt"));

    IOUtils.copyBytes(is,fdos,conf,true);
}


//在远端上传root/software/test.txt

//hdfs dfs -D dfs.blocksize=1048576 -put test.txt

@Test

public void readFile() throws IOException{

    Path path=new Path("/user/root/test.txt");
    FileStatus file=fs.getFileStatus(path);
    BlockLocation[] blks=fs.getFileBlockLocations(file, 0, file.getLen());

    // 遍历数组
    for(BlockLocation blk:blks){
    System.out.println(blk);
    }
 
    //读取文件
    FSDataInputStream fdis=fs.open(path);

    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());

package com.sxt.hdfs.test;

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.BlockLocation;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class TestHDFS {
  Configuration conf=null;
  FileSystem fs=null;

  @Before
  public void conn() throws IOException{

  conf=new Configuration();
  fs=FileSystem.get(conf);


  }

  @Test
  public void mkdir() throws IOException{

  Path path=new Path("/mytemp");
  if(fs.exists(path))
  fs.delete(path,true);

  fs.mkdirs(path);

  }

  @Test
  public void uploadFile() throws IOException{

  // 文件的上传路径
  Path path=new Path("/mytemp/jk.txt");
  FSDataOutputStream fdos=fs.create(path);

  // 拿到磁盘文件
  InputStream is=new BufferedInputStream(new FileInputStream("D:\\hadoop\\usr\\Test\\hadoop实操.txt"));

  IOUtils.copyBytes(is,fdos,conf,true);



  }


  //上传root/software/test.txt

  //hdfs dfs -D dfs.blocksize=1048576 -put test.txt

  @Test

  public void readFile() throws IOException{

  Path path=new Path("/user/root/test.txt");
  FileStatus file=fs.getFileStatus(path);
  BlockLocation[] blks=fs.getFileBlockLocations(file, 0, file.getLen());

  // 遍历数组
  for(BlockLocation blk:blks){
  System.out.println(blk);
  }

  //读取文件

  FSDataInputStream fdis=fs.open(path);


  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());


  }

  @After
  public void close() throws IOException{
    fs.close();
  }
}

}


@After
public void close() throws IOException{
  fs.close();
}

使用mkdir程序创建目录

使用uploadFile程序上传文件

在远端上传root/software/test.txt

hdfs dfs -D dfs.blocksize=1048576 -put test.txt

使用readFile程序获取节点信息

六、实验思考题

  1. 端口号9000和50070的区别?
  • 9000端口通常用于HDFS的通信,即Hadoop分布式文件系统的通信端口。在Hadoop配置中,HDFS使用9000端口进行数据通信。
  • 50070端口一般用于Hadoop集群的Web界面,是Hadoop的NameNode节点的Web UI端口,可以通过浏览器访问该端口查看Hadoop集群的状态以及文件系统的相关信息。

编程中你用到了哪些Java对象?

在你的Java程序中,主要使用了以下Java对象:

  • Configuration:Hadoop配置对象,用于管理Hadoop的配置信息。
  • FileSystem:Hadoop的文件系统抽象类,用于与HDFS进行交互。
  • Path:表示Hadoop中的路径对象,用于指定文件或目录的路径。
  • FSDataOutputStream:用于向HDFS写入数据的输出流对象。
  • InputStream:Java标准库中的输入流,用于读取本地文件的数据。
  • FileStatus:表示文件状态的对象,包括文件大小、块信息等。
  • BlockLocation:表示文件块在HDFS上的位置信息。
  • FSDataInputStream:用于从HDFS读取数据的输入流对象。
  1. hadoop fs、hadoop dfs、hdfs dfs的区别?
  • hadoop fs是Hadoop提供的一个通用文件系统操作命令,可以用来操作不同类型的文件系统,默认情况下会映射到HDFS文件系统。
  • hadoop dfs是Hadoop早期版本提供的命令,用于操作HDFS文件系统,现在已经废弃,推荐使用hadoop fs命令代替。
  • hdfs dfs是Hadoop当前版本推荐的操作HDFS文件系统的命令,是最新版本中用于操作HDFS的命令,推荐使用这个命令进行HDFS文件系统的管理和操作。

atus:表示文件状态的对象,包括文件大小、块信息等。

  • BlockLocation:表示文件块在HDFS上的位置信息。
  • FSDataInputStream:用于从HDFS读取数据的输入流对象。
  1. hadoop fs、hadoop dfs、hdfs dfs的区别?
  • hadoop fs是Hadoop提供的一个通用文件系统操作命令,可以用来操作不同类型的文件系统,默认情况下会映射到HDFS文件系统。
  • hadoop dfs是Hadoop早期版本提供的命令,用于操作HDFS文件系统,现在已经废弃,推荐使用hadoop fs命令代替。
  • hdfs dfs是Hadoop当前版本推荐的操作HDFS文件系统的命令,是最新版本中用于操作HDFS的命令,推荐使用这个命令进行HDFS文件系统的管理和操作。

相关文章
|
12天前
|
人工智能 安全 应用服务中间件
阿里巴巴 MCP 分布式落地实践:快速转换 HSF 到 MCP server
本文分享了阿里巴巴内部将大规模HSF服务快速转换为MCP Server的实践经验,通过Higress网关实现MCP协议卸载,无需修改代码即可接入MCP生态。文章分析了MCP生态面临的挑战,如协议快速迭代和SDK不稳定性,并详细介绍了操作步骤及组件功能。强调MCP虽非终极解决方案,但作为AI业务工程化的起点具有重要意义。最后总结指出,MCP只是AI原生应用发展的第一步,未来还有更多可能性值得探索。
336 45
|
2月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
226 0
分布式爬虫框架Scrapy-Redis实战指南
|
4天前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
42 0
|
1月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
2月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
162 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
2月前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
5月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
1918 66
|
4月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
200 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
4月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
239 7
|
4月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
280 8