【分布式计算框架】HDFS常用操作及编程实践

简介: 【分布式计算框架】HDFS常用操作及编程实践

HDFS常用操作及编程实践

一、实验目的

  • 熟悉HDFS的常用shell命令
  • 配置eclipse编程环境
  • 编程实现创建目录、上传文件、显示文件内容功能
  • 创建一个约1.6M大小的文件,然后设置块大小(1048576)上传文件
  • 编程实现按行读取HDFS文件,显示文件块信息,实现缓存功能

二、实验环境

  • centos 6.5
  • VMware Workstation

三、实验内容

先关闭集群

stop-dfs.sh

zkServer.sh stop

下次启动只要执行

start-dfs.sh

api客户端设置

1.解压hadoop-2.6.5.tar.gz ,hadoop-2.6.5-src.tar.gz 两个压缩文件 到一个干净的目录,比如d:\hadoop\usr

2.再创建hadoop-lib目录,将hadoop-2.6.5/share/hadoop各个目录里的jar包拷贝至这里(httpfs,kms除外)

3.配置windows环境变量 :

HADOOP_HOME=D:\hadoop\usr\hadoop-2.6.5

HADOOP_USER_NAME=root

path=%HADOOP_HOME%\bin;

4.将老师提供的bin目录的文件复制到d:\hadoop\usr\hadoop-2.6.5\bin(覆盖)

5.将bin里的hadoop.dll拷贝到c:\windows\System32

6.解压 eclipse-mars.rar,将hadoop-eclipse-plugin-2.6.0.jar(可视化插件)拷贝到d:\eclipse-mars\mars\plugins

  1. 启动hadoop (node01)

  1. 启动eclipse,project Explorer里有DFS Locations(如果没有出现,选择Java EE),小象图标(可视化控件)

  2. 配置eclipse:

菜单:

window-preferences-hadoop map/reduce

hadoop installation directory:d:\hadoop\usr\hadoop-2.6.5

new hadoop location(定位器)

location name: 任意取

DFS Master (不选 use M/R Master host)

Host:node01 #active的节点

port:8020(50070是浏览器的端口)

实验(创建一个目录/user/root)

  1. 新建一个Java项目

  2. 导入Jar包:

菜单:window-preferences-java-build path-user libraries

自定义一个jar包(比如hadoop_jars)

菜单:add external JARS

选择D:\hadoop\usr\hadoop-lib所有jar包

项目里导入hadoop_jars包 //右击项目名-build path-configure build path-java build path-libraries-add library-use library-hadoop_jars

项目里导入jUnit 4 //右击项目名-build path-configure build path-java build path-libraries-add library-jUnit 4

  1. 导入hdfs-site.xml,core-site.xml配置文件到项目的src目录(使用xftp传输)



  2. 新建一个class
Test20191909/src
com.sxt.hdfs.test
TestHDFS

四、出现的问题及解决方案

  1. jdk版本太高,导致eclipce安装失败,方案:重新安装低版本的jdk

五、实验结果

  1. 浏览器查看上传文件块信息截图

  1. HDFS命令,程序源代码,程序运行结果截图

代码:

Configuration conf=null;
FileSystem fs=null;

@Before
public void conn() throws IOException{
    conf=new Configuration();
    fs=FileSystem.get(conf);
}

@Test
public void mkdir() throws IOException{
    Path path=new Path("/mytemp");
    if(fs.exists(path))
    fs.delete(path,true);

    fs.mkdirs(path);
}

@Test
public void uploadFile() throws IOException{

    // 文件的上传路径
    Path path=new Path("/mytemp/jk.txt");
    FSDataOutputStream fdos=fs.create(path);

    // 拿到磁盘文件
    InputStream is=new BufferedInputStream(new FileInputStream("D:\\hadoop\\usr\\Test\\hadoop实操.txt"));

    IOUtils.copyBytes(is,fdos,conf,true);
}


//在远端上传root/software/test.txt

//hdfs dfs -D dfs.blocksize=1048576 -put test.txt

@Test

public void readFile() throws IOException{

    Path path=new Path("/user/root/test.txt");
    FileStatus file=fs.getFileStatus(path);
    BlockLocation[] blks=fs.getFileBlockLocations(file, 0, file.getLen());

    // 遍历数组
    for(BlockLocation blk:blks){
    System.out.println(blk);
    }
 
    //读取文件
    FSDataInputStream fdis=fs.open(path);

    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());
    System.out.println((char)fdis.readByte());

package com.sxt.hdfs.test;

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.BlockLocation;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class TestHDFS {
  Configuration conf=null;
  FileSystem fs=null;

  @Before
  public void conn() throws IOException{

  conf=new Configuration();
  fs=FileSystem.get(conf);


  }

  @Test
  public void mkdir() throws IOException{

  Path path=new Path("/mytemp");
  if(fs.exists(path))
  fs.delete(path,true);

  fs.mkdirs(path);

  }

  @Test
  public void uploadFile() throws IOException{

  // 文件的上传路径
  Path path=new Path("/mytemp/jk.txt");
  FSDataOutputStream fdos=fs.create(path);

  // 拿到磁盘文件
  InputStream is=new BufferedInputStream(new FileInputStream("D:\\hadoop\\usr\\Test\\hadoop实操.txt"));

  IOUtils.copyBytes(is,fdos,conf,true);



  }


  //上传root/software/test.txt

  //hdfs dfs -D dfs.blocksize=1048576 -put test.txt

  @Test

  public void readFile() throws IOException{

  Path path=new Path("/user/root/test.txt");
  FileStatus file=fs.getFileStatus(path);
  BlockLocation[] blks=fs.getFileBlockLocations(file, 0, file.getLen());

  // 遍历数组
  for(BlockLocation blk:blks){
  System.out.println(blk);
  }

  //读取文件

  FSDataInputStream fdis=fs.open(path);


  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());
  System.out.println((char)fdis.readByte());


  }

  @After
  public void close() throws IOException{
    fs.close();
  }
}

}


@After
public void close() throws IOException{
  fs.close();
}

使用mkdir程序创建目录

使用uploadFile程序上传文件

在远端上传root/software/test.txt

hdfs dfs -D dfs.blocksize=1048576 -put test.txt

使用readFile程序获取节点信息

六、实验思考题

  1. 端口号9000和50070的区别?
  • 9000端口通常用于HDFS的通信,即Hadoop分布式文件系统的通信端口。在Hadoop配置中,HDFS使用9000端口进行数据通信。
  • 50070端口一般用于Hadoop集群的Web界面,是Hadoop的NameNode节点的Web UI端口,可以通过浏览器访问该端口查看Hadoop集群的状态以及文件系统的相关信息。

编程中你用到了哪些Java对象?

在你的Java程序中,主要使用了以下Java对象:

  • Configuration:Hadoop配置对象,用于管理Hadoop的配置信息。
  • FileSystem:Hadoop的文件系统抽象类,用于与HDFS进行交互。
  • Path:表示Hadoop中的路径对象,用于指定文件或目录的路径。
  • FSDataOutputStream:用于向HDFS写入数据的输出流对象。
  • InputStream:Java标准库中的输入流,用于读取本地文件的数据。
  • FileStatus:表示文件状态的对象,包括文件大小、块信息等。
  • BlockLocation:表示文件块在HDFS上的位置信息。
  • FSDataInputStream:用于从HDFS读取数据的输入流对象。
  1. hadoop fs、hadoop dfs、hdfs dfs的区别?
  • hadoop fs是Hadoop提供的一个通用文件系统操作命令,可以用来操作不同类型的文件系统,默认情况下会映射到HDFS文件系统。
  • hadoop dfs是Hadoop早期版本提供的命令,用于操作HDFS文件系统,现在已经废弃,推荐使用hadoop fs命令代替。
  • hdfs dfs是Hadoop当前版本推荐的操作HDFS文件系统的命令,是最新版本中用于操作HDFS的命令,推荐使用这个命令进行HDFS文件系统的管理和操作。

atus:表示文件状态的对象,包括文件大小、块信息等。

  • BlockLocation:表示文件块在HDFS上的位置信息。
  • FSDataInputStream:用于从HDFS读取数据的输入流对象。
  1. hadoop fs、hadoop dfs、hdfs dfs的区别?
  • hadoop fs是Hadoop提供的一个通用文件系统操作命令,可以用来操作不同类型的文件系统,默认情况下会映射到HDFS文件系统。
  • hadoop dfs是Hadoop早期版本提供的命令,用于操作HDFS文件系统,现在已经废弃,推荐使用hadoop fs命令代替。
  • hdfs dfs是Hadoop当前版本推荐的操作HDFS文件系统的命令,是最新版本中用于操作HDFS的命令,推荐使用这个命令进行HDFS文件系统的管理和操作。

相关文章
|
26天前
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。
|
2天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
16 2
|
25天前
|
存储 Java 关系型数据库
在Spring Boot中整合Seata框架实现分布式事务
可以在 Spring Boot 中成功整合 Seata 框架,实现分布式事务的管理和处理。在实际应用中,还需要根据具体的业务需求和技术架构进行进一步的优化和调整。同时,要注意处理各种可能出现的问题,以保障分布式事务的顺利执行。
46 6
|
25天前
|
数据库
如何在Seata框架中配置分布式事务的隔离级别?
总的来说,配置分布式事务的隔离级别是实现分布式事务管理的重要环节之一,需要认真对待和仔细调整,以满足业务的需求和性能要求。你还可以进一步深入研究和实践 Seata 框架的配置和使用,以更好地应对各种分布式事务场景的挑战。
28 6
|
23天前
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
23 1
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
4月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
131 2
基于Redis的高可用分布式锁——RedLock
|
18天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
47 5
|
21天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
39 8
|
1月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
57 16

热门文章

最新文章

下一篇
DataWorks