Apache Flink Client生成StreamGraph

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 概述 上文我们分析提交流程时,RemoteStreamEnvironment类的execute方法的第一步就是生成StreamGraph。 StreamGraph是用于表示流的拓扑结构的数据结构,它包含了生成JobGraph的必要信息。

概述

上文我们分析提交流程时,RemoteStreamEnvironment类的execute方法的第一步就是生成StreamGraph

StreamGraph是用于表示流的拓扑结构的数据结构,它包含了生成JobGraph的必要信息。它的类继承关系图如下:

StreamGraph-class-diagram

如果你按照StreamGraph的继承链向上追溯,最终会发现它实现了接口FlinkPlan。Flink在这里效仿的是数据库的执行SQL是产生执行计划的机制,FlinkPlan定义在Flink的优化器相关的包中,针对流应用的计划是StreamingPlan

针对Batch类的应用的计划类是OptimizedPlan。Flink会对Batch类的应用进行优化(这点我们后面会分析),而当前针对Streaming类的应用没有优化措施。

StreamGraph的形象化表示如下图:

Flink-StreamGraph

Flink官方提供了一个计划可视化器来图形化执行计划

节点和边

上面的图是由“节点”和“边”组成的。节点在Flink中对应的数据结构是StreamNode,而边在Flink中对应的数据结构是StreamEdgeStreamNodeStreamEdge之间存在着组合的依赖关系,依赖关系可见下图:

StreamNode-StreamEdge-relationship

StreamEdge包含了其连接的源节点sourceVertex和目的节点targetVertex,而StreamNode中包含了与其连接的入边集合inEdges和出边集合outEdgesStreamEdgeStreamNode都有唯一的编号进行标识,但是各自编号的生成规则并不相同。

StreamNode的编号id的生成是通过调用StreamTransformation的静态方法getNewNodeId获得的,其实现是一个静态计数器:

// This is used to assign a unique ID to every StreamTransformation
protected static Integer idCounter = 0;

public static int getNewNodeId() {   
    idCounter++;   
    return idCounter;
}

StreamEdge的编号edgeId是字符串类型,其生成的规则为:

this.edgeId = sourceVertex + "_" + targetVertex + "_" + typeNumber + "_" + selectedNames + "_" + outputPartitioner;

它是由多个段连接起来的,语义的文字表述如下:

源顶点_目的顶点_输入类型数量_输出选择器的名称_输出分区器

edgeId除了用来实现StreamEdge的hashCode及equals方法之外并没有其他实际意义。

StreamNode其实是表示operator的数据结构,了解这一点很重要。从Flink开始生成StreamGraph开始,source、sink都是图中的一个节点都是operator,都通过StreamNode这一数据结构来表示,我们常将它们单独拎出来讲是因为它们是流的的输入和输出,但在数据结构层面上它们是一致的。

StreamNode除了存储了输入端和输出端的StreamEdge集合,还封装了operator的其他关键属性,基于这不是我们关注的重点,所以不再赘述。

回过头来我们看JobGraph就不是那么难理解了。它包含了表述整个流拓扑的所有必要信息(比如所有的节点集合、所有的source集合、所有的sink集合、虚拟输出选择节点、虚拟分区节点)。同时还包含了大量操作这些信息的方法。

生成StreamGraph

了解了基础的数据结构之后,我们来分析如何生成JobGraph。定位到getStreamGraph的实现:


public StreamGraph getStreamGraph() {   
    if (transformations.size() <= 0) {      
        throw new IllegalStateException("No operators defined in streaming topology. Cannot execute.");   
    }   

    return StreamGraphGenerator.generate(this, transformations);
}

它依赖于transformations集合,该集合中存储着一个Streaming程序中所有的转换操作对应的StreamTransformation对象。

每当在DataStream对象上调用transform方法或者调用已经被实现了的一些转换操作(如map、flter等,这些转换操作在内部也调用了transform方法),这些调用都会被加入到transformations集合中。

StreamTransformation表示创建DataStream的操作,其实每个DataStream底层都对应着一个StreamTransformation。DataStream持有执行环境对象的引用,当调用transform方法时,它会调用执行环境对象的addOperator方法,将特定的StreamTransformation对象加入到transformations集合中去,这就是transformations集合中元素的来源。

到目前为止我们提到了多个名词,它们之前拥有着强依赖关系,为了避免混淆,我们以flatMap转换操作为例图示各种对象之间的构建关系:

Stream-Object-relationship

在源码中,其实Flink自身的命名也并不是那么准确,比如上图中的SingleOutputStreamOperator其实是一种DataStream,但却以Operator结尾,让人匪夷所思。这种情况下,鉴定它们类型的方式可以通过查看它们的继承链来进行识别。

StreamGraph的生成依赖于生成器StreamGraphGenerator,每调用一次静态方法generate才会在内部创建一个StreamGraphGenerator的实例,一个实例对应着一个StreamGraph对象。StreamGraphGenerator调用内部的实例方法generateInternal来遍历transformations集合的每个对象:


private StreamGraph generateInternal(List<StreamTransformation<?>> transformations) {   
    for (StreamTransformation<?> transformation: transformations) {
        transform(transformation);   
    }   

    return streamGraph;
}

transform方法中,它枚举了Flink中每一种转换类型,并对当前传入的转换类型进行判断,然后将其分发给特定的转换方法进行转换,最终返回当前StreamGraph对象中跟该转换有关的节点编号集合。

你可以将整个过程看作是玩拼图游戏,每遍历完一个转换对象,就离构建完整的StreamGraph更近一步。所有类型各异的转换操作各自持有整个StreamGraph的一部分小图片,根据不同的转换操作类型,它们为StreamGraph提供的“部件”并不完全相同,有的转换只构建节点(如SourceTransformation),有的转换除了构建节点还构建边(如SinkTransformation),有的只构建虚拟节点(如PartitionTransformationSplitTransformationSelectTransformation)。

关于虚拟节点,这里需要说明的是并非所有转换操作都具有实际的物理意义(即物理上对应operator)。有些转换操作只具有逻辑概念,例如unionsplitselectpartition。这些转换操作不会构建真实的StreamNode对象。比如某个流处理应用对应的转换树如下图:

StreamTransformation-demo

但在运行时,其生成的执行计划,这里也就等同于StreamGraph却是下图这种形式:

StreamGraph-demo

从图中可以看到,转换图中对应的一些逻辑操作在产生的执行计划时并不存在,Flink将这些逻辑转换操作转换成了虚拟节点,它们的信息会被绑定到从sourcemap转换的这条边上。

在给StreamGraph创建并添加一个operator时,需要给该operator指定slotSharingGroup,这时需要调用方法determineSlotSharingGroup来获得SlotSharingGroup的名称:

private String determineSlotSharingGroup(String specifiedGroup, Collection<Integer> inputIds) {   
    if (specifiedGroup != null) {      
        return specifiedGroup;   
    } else {      
        String inputGroup = null;      
        for (int id: inputIds) {         
            String inputGroupCandidate = streamGraph.getSlotSharingGroup(id);         
            if (inputGroup == null) {            
                inputGroup = inputGroupCandidate;         
            } else if (!inputGroup.equals(inputGroupCandidate)) {            
                return "default";         
            }      
        }      

        return inputGroup == null ? "default" : inputGroup;   
    }
}

当用户指定了组名,则直接使用用户指定的名称。如果用户没有指定特定的名称,则需要结合输入节点来做决定:第一种情况如果所有的输入节点都拥有相同的slotSharingGroup名称,那么就使用该组名;否则组名将被命名为default

Flink当前对于流处理的应用是不作优化的,所以其执行计划就是StreamGraph。Flink提供了一个执行计划的可视化器,它将客户端生成的执行计划以图形的方式展示出来,就像本节开始我们展示的那幅图就是可视化器生成的。那么我们怎么来查看我们自己编写的程序的执行计划呢?其实很简单,我们以Flink的flink-examples-streaming包中的SocketTextStreamWordCount为例,来看一下如何生成执行计划。

我们将SocketTextStreamWordCount最后一行代码注释掉:

env.execute("WordCount from SocketTextStream Example");

然后将其替换成下面这句:

System.out.println(env.getExecutionPlan());

这行语句的作用是打印当前这个程序的执行计划,它将在控制台产生该执行计划的JSON格式表示:

{"nodes":[{"id":1,"type":"Source: Socket Stream","pact":"Data Source","contents":"Source: Socket Stream",
"parallelism":1},{"id":2,"type":"Flat Map","pact":"Operator","contents":"Flat Map","parallelism":2,
"predecessors":[{"id":1,"ship_strategy":"REBALANCE","side":"second"}]},{"id":4,"type":"Keyed Aggregation",
"pact":"Operator","contents":"Keyed Aggregation","parallelism":2,"predecessors":[{"id":2,
"ship_strategy":"HASH","side":"second"}]},{"id":5,"type":"Sink: Unnamed","pact":"Data Sink",
"contents":"Sink: Unnamed","parallelism":2,"predecessors":[{"id":4,"ship_strategy":"FORWARD",
"side":"second"}]}]}System.out.println(env.getExecutionPlan());

把上面这段JSON复制到Flink的执行计划可视化器,点击下方的Draw按钮,即可生成。

小结

本文我们谈论了StreamGraph的数据结构以及StreamGraphGenerator如何生成StreamGraph。鉴于StreamEdgeStreamNode是组成StreamGraph不可或缺的部分,我们还对这两个数据结构进行了简单的分析。当然,StreamGraph还有一个关键的实例方法:getJobGraph,它用于获取流处理程序的JobGraph(该方法继承自StreamingPlan)。至于什么是JobGraph以及如何获取它,我们将在下文进行讨论。



原文发布时间为:2016-07-23


本文作者:vinoYang


本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
21天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
505 13
Apache Flink 2.0-preview released
|
25天前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
59 3
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
2月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
373 31
Apache Flink 流批融合技术介绍
|
30天前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
52 1
|
29天前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
1月前
|
消息中间件 druid Kafka
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
67 0
|
SQL 消息中间件 分布式计算
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
267 0
|
数据采集 分布式计算 Kubernetes
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
294 0
|
存储 SQL 传感器
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
600 0
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2

推荐镜像

更多