HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 物联网 - 查询一个时序区间的数据 (OLTP)

1、背景

在物联网、互联网、业务系统中都有时序数据,随着时间推移产生的数据。在时间维度或序列字段上呈现自增特性。

区间查询是一种按范围查询的业务需求。

PostgreSQL针对时序类型的数据,除了有传统的b-tree索引,还有一种块级索引BRIN,非常适合这种相关性很好的时序数据。这种索引在Oracle Exadata一体机上也有。而使用PostgreSQL可以免费享用这种高端特性。

2、设计

1亿条时序自增记录,按任意区间查询并输出 5万条记录

3、准备测试表

create table t_range(  
  id int,  
  ts timestamp default clock_timestamp()  
);  
AI 代码解读

4、准备测试函数(可选)

5、准备测试数据

insert into t_range(id) select generate_series(1,100000000);  
AI 代码解读

6、准备测试脚本

1、使用传统的b-tree索引

btree索引占用2142MB空间

create index idx_t_range_id on t_range using btree (id);  
  
postgres=# \di+ idx_t_range_id  
                              List of relations  
 Schema |      Name      | Type  |  Owner   |  Table  |  Size   | Description  
--------+----------------+-------+----------+---------+---------+-------------  
 public | idx_t_range_id | index | postgres | t_range | 2142 MB |  
(1 row)  
AI 代码解读

单次查询效率:

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_range where id between 1 and 50000;  
                                                                QUERY PLAN  
-------------------------------------------------------------------------------------------------------------------------------------------  
 Index Scan using idx_t_range_id on public.t_range  (cost=0.57..1527.31 rows=53167 width=12) (actual time=0.013..9.938 rows=50000 loops=1)  
   Output: id, ts  
   Index Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
   Buffers: shared hit=411  
 Planning time: 0.060 ms  
 Execution time: 14.320 ms  
(6 rows)  
AI 代码解读
vi test.sql  
  
\set id random(1,90000000)  
\set mx :id+50000  
select * from t_range where id between :id and :mx;  
AI 代码解读

2、使用BRIN块级索引

BRIN索引仅占用256KB空间

drop index idx_t_range_id;  
create index idx_t_range_id on t_range using brin (id) with (pages_per_range=64);  
postgres=# \di+ idx_t_range_id  
                              List of relations  
 Schema |      Name      | Type  |  Owner   |  Table  |  Size  | Description  
--------+----------------+-------+----------+---------+--------+-------------  
 public | idx_t_range_id | index | postgres | t_range | 256 kB |  
(1 row)  
AI 代码解读

单次查询效率:

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_range where id between 1 and 50000;  
                                                          QUERY PLAN  
-------------------------------------------------------------------------------------------------------------------------------  
 Bitmap Heap Scan on public.t_range  (cost=43.31..52572.18 rows=38593 width=12) (actual time=1.497..9.807 rows=50000 loops=1)  
   Output: id, ts  
   Recheck Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
   Rows Removed by Index Recheck: 9200  
   Heap Blocks: lossy=320  
   Buffers: shared hit=355  
   ->  Bitmap Index Scan on idx_t_range_id  (cost=0.00..33.66 rows=47360 width=0) (actual time=1.489..1.489 rows=3200 loops=1)  
         Index Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
         Buffers: shared hit=35  
 Planning time: 0.036 ms  
 Execution time: 14.162 ms  
(11 rows)  
AI 代码解读

压测

vi test.sql  
  
\set id random(1,90000000)  
\set mx :id+50000  
select * from t_range where id between :id and :mx;  
AI 代码解读

7、测试

压测

CONNECTS=16  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  
AI 代码解读

8、测试结果

1、b-tree索引

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 16  
number of threads: 16  
duration: 300 s  
number of transactions actually processed: 188165  
latency average = 25.509 ms  
latency stddev = 4.625 ms  
tps = 627.166703 (including connections establishing)  
tps = 627.187145 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set id random(1,90000000)  
         0.000  \set mx :id+50000  
        25.507  select * from t_range where id between :id and :mx;  
AI 代码解读

2、brin索引

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 16  
number of threads: 16  
duration: 300 s  
number of transactions actually processed: 189889  
latency average = 25.278 ms  
latency stddev = 4.570 ms  
tps = 632.907768 (including connections establishing)  
tps = 632.927776 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set id random(1,90000000)  
         0.000  \set mx :id+50000  
        25.276  select * from t_range where id between :id and :mx;  
AI 代码解读

TPS

1、b-tree索引

627  
  
相当于每秒返回3135万行记录。  
AI 代码解读

2、brin索引

632  
  
相当于每秒返回3160万行记录。  
AI 代码解读

平均响应时间

1、b-tree索引

25.509 毫秒  
AI 代码解读

2、brin索引

25.278 毫秒  
AI 代码解读

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
打赏
0
0
0
0
20685
分享
相关文章
瑶池数据库大讲堂|PolarDB HTAP:为在线业务插上实时分析的翅膀
瑶池数据库大讲堂介绍PolarDB HTAP,为在线业务提供实时分析能力。内容涵盖MySQL在线业务的分析需求与现有解决方案、PolarDB HTAP架构优化、针对分析型负载的优化(如向量化执行、多核并行处理)及近期性能改进和用户体验提升。通过这些优化,PolarDB HTAP实现了高效的数据处理和查询加速,帮助用户更好地应对复杂业务场景。
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
78 2
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
39 11
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
56 10
【赵渝强老师】PostgreSQL的数据文件
PostgreSQL的物理存储结构主要包括数据文件、日志文件等。数据文件按oid命名,超过1G时自动拆分。通过查询数据库和表的oid,可定位到具体的数据文件。例如,查询数据库oid后,再查询特定表的oid及relfilenode,即可找到该表对应的数据文件位置。
111 1
使用PostgreSQL触发器解决物联网设备状态同步问题
在物联网监控系统中,确保设备状态(如在线与离线)的实时性和准确性至关重要。当设备状态因外部因素改变时,需迅速反映到系统内部。因设备状态数据分布在不同表中,直接通过应用同步可能引入复杂性和错误。采用PostgreSQL触发器自动同步状态变化是一种高效方法。首先定义触发函数,在设备状态改变时更新管理模块表;然后创建触发器,在状态字段更新后执行此函数。此外,还需进行充分测试、监控性能并实施优化,以及在触发函数中加入错误处理和日志记录功能。这种方法不仅提高自动化程度,增强数据一致性与实时性,还需注意其对性能的影响并采取优化措施。
136 2
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
718 0
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等