PostgreSQL 百亿数据 秒级响应 正则及模糊查询

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 正则匹配和模糊匹配通常是搜索引擎的特长,但是如果你使用的是 PostgreSQL 数据库照样能实现,并且性能不赖,加上分布式方案 (譬如 plproxy, pg_shard, fdw shard, pg-xc, pg-xl, greenplum),处理百亿以上数据量的正则匹配和模糊匹配效果杠杠的,.

正则匹配和模糊匹配通常是搜索引擎的特长,但是如果你使用的是 PostgreSQL 数据库照样能实现,并且性能不赖,加上分布式方案 (譬如 plproxy, pg_shard, fdw shard, pg-xc, pg-xl, greenplum),处理百亿以上数据量的正则匹配和模糊匹配效果杠杠的,同时还不失数据库固有的功能,一举多得。

物联网中有大量的数据,除了数字数据,还有字符串类的数据,例如条形码,车牌,手机号,邮箱,姓名等等。
假设用户需要在大量的传感数据中进行模糊检索,甚至规则表达式匹配,有什么高效的方法呢?
这种场景还挺多,例如市面上发现了一批药品可能有问题,需要对药品条码进行规则表达式查找,找出复合条件的药品流向。
又比如在侦查行动时,线索的检索,如用户提供的残缺的电话号码,邮箱,车牌,IP地址,QQ号码,微信号码等等。
根据这些信息加上时间的叠加,模糊匹配和关联,最终找出罪犯。
可以看出,模糊匹配,正则表达式匹配,和人脸拼图有点类似,需求非常的迫切。

首先对应用场景进行一下分类,以及现有技术下能使用的优化手段。
.1. 带前缀的模糊查询,例如 like 'ABC%',在PG中也可以写成 ~ '^ABC'
可以使用btree索引优化,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.2. 带后缀的模糊查询,例如 like '%ABC',在PG中也可以写成 ~ 'ABC$'
可以使用reverse函数btree索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.3. 不带前缀和后缀的模糊查询,例如 like '%AB_C%',在PG中也可以写成 ~ 'AB.C'
可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.4. 正则表达式查询,例如 ~ '[\d]+def1.?[a|b|0|8]{1,3}'
可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

PostgreSQL pg_trgm插件自从9.1开始支持模糊查询使用索引,从9.3开始支持规则表达式查询使用索引,大大提高了PostgreSQL在刑侦方面的能力。
代码见
https://github.com/postgrespro/pg_trgm_pro

pg_trgm插件的原理,将字符串前加2个空格,后加1个空格,组成一个新的字符串,并将这个新的字符串按照每3个相邻的字符拆分成多个token。
当使用规则表达式或者模糊查询进行匹配时,会检索出他们的近似度,再进行filter。
GIN索引的图例:
26721394885162976
从btree检索到匹配的token时,指向对应的list, 从list中存储的ctid找到对应的记录。
因为一个字符串会拆成很多个token,所以没插入一条记录,会更新多条索引,这也是GIN索引需要fastupdate的原因。
正则匹配是怎么做到的呢?
详见 https://raw.githubusercontent.com/postgrespro/pg_trgm_pro/master/trgm_regexp.c
实际上它是将正则表达式转换成了NFA格式,然后扫描多个TOKEN,进行bit and|or匹配。
正则组合如果转换出来的的bit and|or很多的话,就需要大量的recheck,性能也不能好到哪里去。

下面针对以上四种场景,实例讲解如何优化。

.1. 带前缀的模糊查询,例如 like 'ABC%',在PG中也可以写成 ~ '^ABC'
可以使用btree索引优化,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。
例子,1000万随机产生的MD5数据的前8个字符。

postgres=# create table tb(info text);  
CREATE TABLE  
postgres=# insert into tb select substring(md5(random()::text),1,8) from generate_series(1,10000000);  
INSERT 0 10000000  
postgres=# create index idx_tb on tb(info);  
CREATE INDEX  
postgres=# select * from tb limit 1;  
   info     
----------  
 376821ab  
(1 row)  
postgres=# explain select * from tb where info ~ '^376821' limit 10;  
                                  QUERY PLAN                                     
-------------------------------------------------------------------------------  
 Limit  (cost=0.43..0.52 rows=10 width=9)  
   ->  Index Only Scan using idx_tb on tb  (cost=0.43..8.46 rows=1000 width=9)  
         Index Cond: ((info >= '376821'::text) AND (info < '376822'::text))  
         Filter: (info ~ '^376821'::text)  
(4 rows)  
postgres=# select * from tb where info ~ '^376821' limit 10;  
   info     
----------  
 376821ab  
(1 row)  
Time: 0.536 ms  
postgres=# set enable_indexscan=off;  
SET  
Time: 1.344 ms  
postgres=# set enable_bitmapscan=off;  
SET  
Time: 0.158 ms  
postgres=# explain select * from tb where info ~ '^376821' limit 10;  
                           QUERY PLAN                             
----------------------------------------------------------------  
 Limit  (cost=0.00..1790.55 rows=10 width=9)  
   ->  Seq Scan on tb  (cost=0.00..179055.00 rows=1000 width=9)  
         Filter: (info ~ '^376821'::text)  
(3 rows)  
Time: 0.505 ms  

带前缀的模糊查询,不使用索引需要5483毫秒。
带前缀的模糊查询,使用索引只需要0.5毫秒。

postgres=# select * from tb where info ~ '^376821' limit 10;  
   info     
----------  
 376821ab  
(1 row)  
Time: 5483.655 ms  

.2. 带后缀的模糊查询,例如 like '%ABC',在PG中也可以写成 ~ 'ABC$'
可以使用reverse函数btree索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

postgres=# create index idx_tb1 on tb(reverse(info));  
CREATE INDEX  
postgres=# explain select * from tb where reverse(info) ~ '^ba128' limit 10;  
                                         QUERY PLAN                                           
--------------------------------------------------------------------------------------------  
 Limit  (cost=0.43..28.19 rows=10 width=9)  
   ->  Index Scan using idx_tb1 on tb  (cost=0.43..138778.43 rows=50000 width=9)  
         Index Cond: ((reverse(info) >= 'ba128'::text) AND (reverse(info) < 'ba129'::text))  
         Filter: (reverse(info) ~ '^ba128'::text)  
(4 rows)  

postgres=# select * from tb where reverse(info) ~ '^ba128' limit 10;  
   info     
----------  
 220821ab  
 671821ab  
 305821ab  
 e65821ab  
 536821ab  
 376821ab  
 668821ab  
 4d8821ab  
 26c821ab  
(9 rows)  
Time: 0.506 ms  

带后缀的模糊查询,使用索引只需要0.5毫秒。

.3. 不带前缀和后缀的模糊查询,例如 like '%AB_C%',在PG中也可以写成 ~ 'AB.C'
可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

postgres=# create extension pg_trgm;  
postgres=# explain select * from tb where info ~ '5821a';  
                                 QUERY PLAN                                   
----------------------------------------------------------------------------  
 Bitmap Heap Scan on tb  (cost=103.75..3677.71 rows=1000 width=9)  
   Recheck Cond: (info ~ '5821a'::text)  
   ->  Bitmap Index Scan on idx_tb_2  (cost=0.00..103.50 rows=1000 width=0)  
         Index Cond: (info ~ '5821a'::text)  
(4 rows)  
Time: 0.647 ms  

postgres=# select * from tb where info ~ '5821a';  
   info     
----------  
 5821a8a3  
 945821af  
 45821a74  
 9fe5821a  
 5821a7e0  
 5821af2a  
 1075821a  
 e5821ac9  
 d265821a  
 45f5821a  
 df5821a4  
 de5821af  
 71c5821a  
 375821a3  
 fc5821af  
 5c5821ad  
 e65821ab  
 5821adde  
 c35821a6  
 5821a642  
 305821ab  
 5821a1c8  
 75821a5c  
 ce95821a  
 a65821ad  
(25 rows)  
Time: 3.808 ms  

前后模糊查询,使用索引只需要3.8毫秒。

.4. 正则表达式查询,例如 ~ '[\d]+def1.?[a|b|0|8]{1,3}'
可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

前后模糊查询,使用索引只需要108毫秒。

postgres=# select * from tb where info ~ 'e65[\d]{2}a[b]{1,2}8' limit 10;  
   info     
----------  
 4e6567ab  
 1e6530ab  
 e6500ab8  
 ae6583ab  
 e6564ab7  
 5e6532ab  
 e6526abf  
 e6560ab6  
(8 rows)  
Time: 108.577 ms  

时间主要花费在排他上面。
检索了14794行,remove了14793行。大量的时间花费在无用功上,但是比全表扫还是好很多。

postgres=# explain (verbose,analyze,buffers,costs,timing) select * from tb where info ~ 'e65[\d]{2}a[b]{1,2}8' limit 10;  
                                                            QUERY PLAN                                                              
----------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=511.75..547.49 rows=10 width=9) (actual time=89.934..120.567 rows=1 loops=1)  
   Output: info  
   Buffers: shared hit=13054  
   ->  Bitmap Heap Scan on public.tb  (cost=511.75..4085.71 rows=1000 width=9) (actual time=89.930..120.562 rows=1 loops=1)  
         Output: info  
         Recheck Cond: (tb.info ~ 'e65[\d]{2}a[b]{1,2}8'::text)  
         Rows Removed by Index Recheck: 14793  
         Heap Blocks: exact=12929  
         Buffers: shared hit=13054  
         ->  Bitmap Index Scan on idx_tb_2  (cost=0.00..511.50 rows=1000 width=0) (actual time=67.589..67.589 rows=14794 loops=1)  
               Index Cond: (tb.info ~ 'e65[\d]{2}a[b]{1,2}8'::text)  
               Buffers: shared hit=125  
 Planning time: 0.493 ms  
 Execution time: 120.618 ms  
(14 rows)  
Time: 124.693 ms  

优化:
使用gin索引后,需要考虑性能问题,因为info字段被打散成了多个char(3)的token,从而涉及到非常多的索引条目,如果有非常高并发的插入,最好把gin_pending_list_limit设大,来提高插入效率,降低实时合并索引带来的RT升高。
使用了fastupdate后,会在每次vacuum表时,自动将pengding的信息合并到GIN索引中。
还有一点,查询不会有合并的动作,对于没有合并的GIN信息是使用遍历的方式搜索的。

压测高并发的性能:

create table tbl(id serial8, crt_time timestamp, sensorid int, sensorloc point, info text) with (autovacuum_enabled=on, autovacuum_vacuum_threshold=0.000001,autovacuum_vacuum_cost_delay=0);  
CREATE INDEX trgm_idx ON tbl USING GIN (info gin_trgm_ops) with (fastupdate='on', gin_pending_list_limit='6553600');  
alter sequence tbl_id_seq cache 10000;  

修改配置,让数据库的autovacuum快速迭代合并gin。

vi $PGDATA/postgresql.conf  
autovacuum_naptime=1s  
maintenance_work_mem=1GB  
autovacuum_work_mem=1GB  
autovacuum = on  
autovacuum_max_workers = 3  
log_autovacuum_min_duration = 0  
autovacuum_vacuum_cost_delay=0  

$ pg_ctl reload  

创建一个测试函数,用来产生随机的测试数据。

postgres=# create or replace function f() returns void as $$  
  insert into tbl (crt_time,sensorid,info) values ( clock_timestamp(),trunc(random()*500000),substring(md5(random()::text),1,8) );  
$$ language sql strict;  

vi test.sql  
select f();  

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 48 -j 48 -T 10000  

progress: 50.0 s, 52800.9 tps, lat 0.453 ms stddev 0.390  
progress: 51.0 s, 52775.8 tps, lat 0.453 ms stddev 0.398  
progress: 52.0 s, 53173.2 tps, lat 0.449 ms stddev 0.371  
progress: 53.0 s, 53010.0 tps, lat 0.451 ms stddev 0.390  
progress: 54.0 s, 53360.9 tps, lat 0.448 ms stddev 0.365  
progress: 55.0 s, 53285.0 tps, lat 0.449 ms stddev 0.362  
progress: 56.0 s, 53662.1 tps, lat 0.445 ms stddev 0.368  
progress: 57.0 s, 53283.8 tps, lat 0.448 ms stddev 0.385  
progress: 58.0 s, 53703.4 tps, lat 0.445 ms stddev 0.355  
progress: 59.0 s, 53818.7 tps, lat 0.444 ms stddev 0.344  
progress: 60.0 s, 53889.2 tps, lat 0.443 ms stddev 0.361  
progress: 61.0 s, 53613.8 tps, lat 0.446 ms stddev 0.355  
progress: 62.0 s, 53339.9 tps, lat 0.448 ms stddev 0.392  
progress: 63.0 s, 54014.9 tps, lat 0.442 ms stddev 0.346  
progress: 64.0 s, 53112.1 tps, lat 0.450 ms stddev 0.374  
progress: 65.0 s, 53706.1 tps, lat 0.445 ms stddev 0.367  
progress: 66.0 s, 53720.9 tps, lat 0.445 ms stddev 0.353  
progress: 67.0 s, 52858.1 tps, lat 0.452 ms stddev 0.415  
progress: 68.0 s, 53218.9 tps, lat 0.449 ms stddev 0.387  
progress: 69.0 s, 53403.0 tps, lat 0.447 ms stddev 0.377  
progress: 70.0 s, 53179.9 tps, lat 0.449 ms stddev 0.377  
progress: 71.0 s, 53232.4 tps, lat 0.449 ms stddev 0.373  
progress: 72.0 s, 53011.7 tps, lat 0.451 ms stddev 0.386  
progress: 73.0 s, 52685.1 tps, lat 0.454 ms stddev 0.384  
progress: 74.0 s, 52937.8 tps, lat 0.452 ms stddev 0.377  

按照这个速度,一天能支持超过40亿数据入库。

接下来对比一下字符串分离的例子,这个例子适用于字符串长度固定,并且很小的场景,如果字符串长度不固定,这种方法没用。
适用splict的方法,测试数据不尽人意,所以还是用pg_trgm比较靠谱。

postgres=# create table t_split(id int, crt_time timestamp, sensorid int, sensorloc point, info text, c1 char(1), c2 char(1), c3 char(1), c4 char(1), c5 char(1), c6 char(1), c7 char(1), c8 char(1));  
CREATE TABLE  
Time: 2.123 ms  

postgres=# insert into t_split(id,crt_time,sensorid,info,c1,c2,c3,c4,c5,c6,c7,c8) select id,ct,sen,info,substring(info,1,1),substring(info,2,1),substring(info,3,1),substring(info,4,1),substring(info,5,1),substring(info,6,1),substring(info,7,1),substring(info,8,1) from (select id, clock_timestamp() ct, trunc(random()*500000) sen, substring(md5(random()::text), 1, 8) info from generate_series(1,10000000) t(id)) t;  
INSERT 0 10000000  
Time: 81829.274 ms  

postgres=# create index idx1 on t_split (c1);  
postgres=# create index idx2 on t_split (c2);  
postgres=# create index idx3 on t_split (c3);  
postgres=# create index idx4 on t_split (c4);  
postgres=# create index idx5 on t_split (c5);  
postgres=# create index idx6 on t_split (c6);  
postgres=# create index idx7 on t_split (c7);  
postgres=# create index idx8 on t_split (c8);  
postgres=# create index idx9 on t_split using gin (info gin_trgm_ops);  

postgres=# select * from t_split limit 1;  
 id |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
----+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
  1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
(1 row)  

postgres=# select * from t_split where info ~ '^3[\d]?eed[\d]?79$' limit 10;  
 id |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
----+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
  1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
(1 row)  
Time: 133.041 ms  
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where info ~ '^3[\d]?eed[\d]?79$' limit 10;  
                                                            QUERY PLAN                                                              
----------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=575.75..612.78 rows=10 width=57) (actual time=92.406..129.838 rows=1 loops=1)  
   Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
   Buffers: shared hit=13798  
   ->  Bitmap Heap Scan on public.t_split  (cost=575.75..4278.56 rows=1000 width=57) (actual time=92.403..129.833 rows=1 loops=1)  
         Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
         Recheck Cond: (t_split.info ~ '^3[\d]?eed[\d]?79$'::text)  
         Rows Removed by Index Recheck: 14690  
         Heap Blocks: exact=13669  
         Buffers: shared hit=13798  
         ->  Bitmap Index Scan on idx9  (cost=0.00..575.50 rows=1000 width=0) (actual time=89.576..89.576 rows=14691 loops=1)  
               Index Cond: (t_split.info ~ '^3[\d]?eed[\d]?79$'::text)  
               Buffers: shared hit=129  
 Planning time: 0.385 ms  
 Execution time: 129.883 ms  
(14 rows)  

Time: 130.678 ms  


postgres=# select * from t_split where c1='3' and c3='e' and c4='e' and c5='d' and c7='7' and c8='9' and c2 between '0' and '9' and c6 between '0' and '9' limit 10;  
 id |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
----+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
  1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
(1 row)  

Time: 337.367 ms  

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where c1='3' and c3='e' and c4='e' and c5='d' and c7='7' and c8='9' and c2 between '0' and '9' and c6 between '0' and '9' limit 10;  
                                                                                                                 QUERY PLAN                                                                                                                   
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=33582.31..41499.35 rows=1 width=57) (actual time=339.230..344.675 rows=1 loops=1)  
   Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
   Buffers: shared hit=7581  
   ->  Bitmap Heap Scan on public.t_split  (cost=33582.31..41499.35 rows=1 width=57) (actual time=339.228..344.673 rows=1 loops=1)  
         Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
         Recheck Cond: ((t_split.c3 = 'e'::bpchar) AND (t_split.c8 = '9'::bpchar) AND (t_split.c5 = 'd'::bpchar))  
         Filter: ((t_split.c2 >= '0'::bpchar) AND (t_split.c2 <= '9'::bpchar) AND (t_split.c6 >= '0'::bpchar) AND (t_split.c6 <= '9'::bpchar) AND (t_split.c1 = '3'::bpchar) AND (t_split.c4 = 'e'::bpchar) AND (t_split.c7 = '7'::bpchar))  
         Rows Removed by Filter: 2480  
         Heap Blocks: exact=2450  
         Buffers: shared hit=7581  
         ->  BitmapAnd  (cost=33582.31..33582.31 rows=2224 width=0) (actual time=338.512..338.512 rows=0 loops=1)  
               Buffers: shared hit=5131  
               ->  Bitmap Index Scan on idx3  (cost=0.00..11016.93 rows=596333 width=0) (actual time=104.418..104.418 rows=624930 loops=1)  
                     Index Cond: (t_split.c3 = 'e'::bpchar)  
                     Buffers: shared hit=1711  
               ->  Bitmap Index Scan on idx8  (cost=0.00..11245.44 rows=608667 width=0) (actual time=100.185..100.185 rows=625739 loops=1)  
                     Index Cond: (t_split.c8 = '9'::bpchar)  
                     Buffers: shared hit=1712  
               ->  Bitmap Index Scan on idx5  (cost=0.00..11319.44 rows=612667 width=0) (actual time=99.480..99.480 rows=624269 loops=1)  
                     Index Cond: (t_split.c5 = 'd'::bpchar)  
                     Buffers: shared hit=1708  
 Planning time: 0.262 ms  
 Execution time: 344.731 ms  
(23 rows)  

Time: 346.424 ms  

postgres=# select * from t_split where info ~ '^33.+7.+9$' limit 10;  
   id   |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
--------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
      1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
  24412 | 2016-03-02 09:58:04.186359 |   251599 |           | 33f07429 | 3  | 3  | f  | 0  | 7  | 4  | 2  | 9  
  24989 | 2016-03-02 09:58:04.191112 |   214569 |           | 334587d9 | 3  | 3  | 4  | 5  | 8  | 7  | d  | 9  
  50100 | 2016-03-02 09:58:04.398499 |   409819 |           | 33beb7b9 | 3  | 3  | b  | e  | b  | 7  | b  | 9  
  92623 | 2016-03-02 09:58:04.745372 |   280100 |           | 3373e719 | 3  | 3  | 7  | 3  | e  | 7  | 1  | 9  
 106054 | 2016-03-02 09:58:04.855627 |   155192 |           | 33c575c9 | 3  | 3  | c  | 5  | 7  | 5  | c  | 9  
 107070 | 2016-03-02 09:58:04.863827 |   464325 |           | 337dd729 | 3  | 3  | 7  | d  | d  | 7  | 2  | 9  
 135152 | 2016-03-02 09:58:05.088217 |   240500 |           | 336271d9 | 3  | 3  | 6  | 2  | 7  | 1  | d  | 9  
 156425 | 2016-03-02 09:58:05.25805  |   218202 |           | 333e7289 | 3  | 3  | 3  | e  | 7  | 2  | 8  | 9  
 170210 | 2016-03-02 09:58:05.368371 |   132530 |           | 33a8d789 | 3  | 3  | a  | 8  | d  | 7  | 8  | 9  
(10 rows)  

Time: 20.431 ms  

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where info ~ '^33.+7.+9$' limit 10;  
                                                           QUERY PLAN                                                              
---------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=43.75..80.78 rows=10 width=57) (actual time=19.573..21.212 rows=10 loops=1)  
   Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
   Buffers: shared hit=566  
   ->  Bitmap Heap Scan on public.t_split  (cost=43.75..3746.56 rows=1000 width=57) (actual time=19.571..21.206 rows=10 loops=1)  
         Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
         Recheck Cond: (t_split.info ~ '^33.+7.+9$'::text)  
         Rows Removed by Index Recheck: 647  
         Heap Blocks: exact=552  
         Buffers: shared hit=566  
         ->  Bitmap Index Scan on idx9  (cost=0.00..43.50 rows=1000 width=0) (actual time=11.712..11.712 rows=39436 loops=1)  
               Index Cond: (t_split.info ~ '^33.+7.+9$'::text)  
               Buffers: shared hit=14  
 Planning time: 0.301 ms  
 Execution time: 21.255 ms  
(14 rows)  

Time: 21.995 ms  


postgres=# select * from t_split where c1='3' and c2='3' and c8='9' and (c4='7' or c5='7' or c6='7') limit 10;  
   id   |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
--------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
      1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
  24412 | 2016-03-02 09:58:04.186359 |   251599 |           | 33f07429 | 3  | 3  | f  | 0  | 7  | 4  | 2  | 9  
  24989 | 2016-03-02 09:58:04.191112 |   214569 |           | 334587d9 | 3  | 3  | 4  | 5  | 8  | 7  | d  | 9  
  50100 | 2016-03-02 09:58:04.398499 |   409819 |           | 33beb7b9 | 3  | 3  | b  | e  | b  | 7  | b  | 9  
  92623 | 2016-03-02 09:58:04.745372 |   280100 |           | 3373e719 | 3  | 3  | 7  | 3  | e  | 7  | 1  | 9  
 106054 | 2016-03-02 09:58:04.855627 |   155192 |           | 33c575c9 | 3  | 3  | c  | 5  | 7  | 5  | c  | 9  
 107070 | 2016-03-02 09:58:04.863827 |   464325 |           | 337dd729 | 3  | 3  | 7  | d  | d  | 7  | 2  | 9  
 135152 | 2016-03-02 09:58:05.088217 |   240500 |           | 336271d9 | 3  | 3  | 6  | 2  | 7  | 1  | d  | 9  
 156425 | 2016-03-02 09:58:05.25805  |   218202 |           | 333e7289 | 3  | 3  | 3  | e  | 7  | 2  | 8  | 9  
 170210 | 2016-03-02 09:58:05.368371 |   132530 |           | 33a8d789 | 3  | 3  | a  | 8  | d  | 7  | 8  | 9  
(10 rows)  

Time: 37.739 ms  

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_split where c1='3' and c2='3' and c8='9' and (c4='7' or c5='7' or c6='7') limit 10;  
                                                                                               QUERY PLAN                                                                                                  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.00..8135.78 rows=10 width=57) (actual time=0.017..35.532 rows=10 loops=1)  
   Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
   Buffers: shared hit=1755  
   ->  Seq Scan on public.t_split  (cost=0.00..353093.00 rows=434 width=57) (actual time=0.015..35.526 rows=10 loops=1)  
         Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8  
         Filter: ((t_split.c1 = '3'::bpchar) AND (t_split.c2 = '3'::bpchar) AND (t_split.c8 = '9'::bpchar) AND ((t_split.c4 = '7'::bpchar) OR (t_split.c5 = '7'::bpchar) OR (t_split.c6 = '7'::bpchar)))  
         Rows Removed by Filter: 170200  
         Buffers: shared hit=1755  
 Planning time: 0.210 ms  
 Execution time: 35.572 ms  
(10 rows)  

Time: 36.260 ms  

postgres=# select * from t_split where info ~ '^3.?[b-g]+ed[\d]+79' order by info <-> '^3.?[b-g]+ed[\d]+79' limit 10;  
   id    |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
---------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
       1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
 1308724 | 2016-03-02 09:58:14.590901 |   458822 |           | 3fed9479 | 3  | f  | e  | d  | 9  | 4  | 7  | 9  
 2866024 | 2016-03-02 09:58:27.20105  |   106467 |           | 3fed2279 | 3  | f  | e  | d  | 2  | 2  | 7  | 9  
 4826729 | 2016-03-02 09:58:42.907431 |   228023 |           | 3ded9879 | 3  | d  | e  | d  | 9  | 8  | 7  | 9  
 6113373 | 2016-03-02 09:58:53.211146 |   499702 |           | 36fed479 | 3  | 6  | f  | e  | d  | 4  | 7  | 9  
 1768237 | 2016-03-02 09:58:18.310069 |   345027 |           | 30fed079 | 3  | 0  | f  | e  | d  | 0  | 7  | 9  
 1472324 | 2016-03-02 09:58:15.913629 |   413283 |           | 3eed5798 | 3  | e  | e  | d  | 5  | 7  | 9  | 8  
 8319056 | 2016-03-02 09:59:10.902137 |   336740 |           | 3ded7790 | 3  | d  | e  | d  | 7  | 7  | 9  | 0  
 8576573 | 2016-03-02 09:59:12.962923 |   130223 |           | 3eed5793 | 3  | e  | e  | d  | 5  | 7  | 9  | 3  
(9 rows)  

Time: 268.661 ms  

postgres=# explain (analyze,verbose,timing,buffers,costs) select * from t_split where info ~ '^3.?[b-g]+ed[\d]+79' order by info <-> '^3.?[b-g]+ed[\d]+79' limit 10;  
                                                               QUERY PLAN                                                                  
-----------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=4302.66..4302.69 rows=10 width=57) (actual time=269.214..269.217 rows=9 loops=1)  
   Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '^3.?[b-g]+ed[\d]+79'::text))  
   Buffers: shared hit=52606  
   ->  Sort  (cost=4302.66..4305.16 rows=1000 width=57) (actual time=269.212..269.212 rows=9 loops=1)  
         Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '^3.?[b-g]+ed[\d]+79'::text))  
         Sort Key: ((t_split.info <-> '^3.?[b-g]+ed[\d]+79'::text))  
         Sort Method: quicksort  Memory: 26kB  
         Buffers: shared hit=52606  
         ->  Bitmap Heap Scan on public.t_split  (cost=575.75..4281.06 rows=1000 width=57) (actual time=100.771..269.180 rows=9 loops=1)  
               Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, (info <-> '^3.?[b-g]+ed[\d]+79'::text)  
               Recheck Cond: (t_split.info ~ '^3.?[b-g]+ed[\d]+79'::text)  
               Rows Removed by Index Recheck: 72929  
               Heap Blocks: exact=52479  
               Buffers: shared hit=52606  
               ->  Bitmap Index Scan on idx9  (cost=0.00..575.50 rows=1000 width=0) (actual time=88.062..88.062 rows=72938 loops=1)  
                     Index Cond: (t_split.info ~ '^3.?[b-g]+ed[\d]+79'::text)  
                     Buffers: shared hit=127  
 Planning time: 0.640 ms  
 Execution time: 269.287 ms  
(19 rows)  

Time: 270.430 ms  

postgres=# select * from t_split where info ~ '3.?[b-g]+ed[\d]+79' order by info <-> '3.?[b-g]+ed[\d]+79' limit 10;  
   id    |          crt_time          | sensorid | sensorloc |   info   | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8   
---------+----------------------------+----------+-----------+----------+----+----+----+----+----+----+----+----  
       1 | 2016-03-02 09:58:03.990639 |   161958 |           | 33eed779 | 3  | 3  | e  | e  | d  | 7  | 7  | 9  
 1308724 | 2016-03-02 09:58:14.590901 |   458822 |           | 3fed9479 | 3  | f  | e  | d  | 9  | 4  | 7  | 9  
 4826729 | 2016-03-02 09:58:42.907431 |   228023 |           | 3ded9879 | 3  | d  | e  | d  | 9  | 8  | 7  | 9  
 5250603 | 2016-03-02 09:58:46.300289 |   250582 |           | d3eed179 | d  | 3  | e  | e  | d  | 1  | 7  | 9  
 6113373 | 2016-03-02 09:58:53.211146 |   499702 |           | 36fed479 | 3  | 6  | f  | e  | d  | 4  | 7  | 9  
 1768237 | 2016-03-02 09:58:18.310069 |   345027 |           | 30fed079 | 3  | 0  | f  | e  | d  | 0  | 7  | 9  
 2866024 | 2016-03-02 09:58:27.20105  |   106467 |           | 3fed2279 | 3  | f  | e  | d  | 2  | 2  | 7  | 9  
 1472324 | 2016-03-02 09:58:15.913629 |   413283 |           | 3eed5798 | 3  | e  | e  | d  | 5  | 7  | 9  | 8  
 8576573 | 2016-03-02 09:59:12.962923 |   130223 |           | 3eed5793 | 3  | e  | e  | d  | 5  | 7  | 9  | 3  
 8319056 | 2016-03-02 09:59:10.902137 |   336740 |           | 3ded7790 | 3  | d  | e  | d  | 7  | 7  | 9  | 0  
(10 rows)  

Time: 320.525 ms  

postgres=# explain (analyze,verbose,buffers,costs,timing) select * from t_split where info ~ '3.?[b-g]+ed[\d]+79' order by info <-> '3.?[b-g]+ed[\d]+79' limit 10;  
                                                                QUERY PLAN                                                                  
------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=4302.66..4302.69 rows=10 width=57) (actual time=319.925..319.927 rows=10 loops=1)  
   Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '3.?[b-g]+ed[\d]+79'::text))  
   Buffers: shared hit=52602  
   ->  Sort  (cost=4302.66..4305.16 rows=1000 width=57) (actual time=319.923..319.923 rows=10 loops=1)  
         Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, ((info <-> '3.?[b-g]+ed[\d]+79'::text))  
         Sort Key: ((t_split.info <-> '3.?[b-g]+ed[\d]+79'::text))  
         Sort Method: quicksort  Memory: 26kB  
         Buffers: shared hit=52602  
         ->  Bitmap Heap Scan on public.t_split  (cost=575.75..4281.06 rows=1000 width=57) (actual time=104.526..319.885 rows=10 loops=1)  
               Output: id, crt_time, sensorid, sensorloc, info, c1, c2, c3, c4, c5, c6, c7, c8, (info <-> '3.?[b-g]+ed[\d]+79'::text)  
               Recheck Cond: (t_split.info ~ '3.?[b-g]+ed[\d]+79'::text)  
               Rows Removed by Index Recheck: 72928  
               Heap Blocks: exact=52479  
               Buffers: shared hit=52602  
               ->  Bitmap Index Scan on idx9  (cost=0.00..575.50 rows=1000 width=0) (actual time=91.945..91.945 rows=72938 loops=1)  
                     Index Cond: (t_split.info ~ '3.?[b-g]+ed[\d]+79'::text)  
                     Buffers: shared hit=123  
 Planning time: 0.948 ms  
 Execution time: 320.003 ms  
(19 rows)  

Time: 321.502 ms  

大数据量性能测试:
模拟分区表,每小时一个分区,每小时数据量5000万,一天12亿,一个月360亿。

drop table tbl cascade;  
create table tbl (id serial8, crt_time timestamp, sensorid int, sensorloc point, info text);  

do language plpgsql $$  
declare  
  v_s timestamp := '2016-01-01 00:00:00';  
begin  
  for i in 1..720 loop  
    execute 'create table tbl_'||to_char(v_s,'yyyymmddhh24')||' (id int8 not null default nextval(''tbl_id_seq''::regclass), crt_time timestamp check (crt_time >= '''||to_char(v_s,'yyyy-mm-dd hh24:mi:ss')||''' and crt_time <'''||to_char(v_s+'1 h'::interval,'yyyy-mm-dd hh24:mi:ss')||'''), sensorid int, sensorloc point, info text) inherits (tbl)';  
    v_s := v_s + '1 h'::interval;  
  end loop;  
end;  
$$;  

alter sequence tbl_id_seq cache 100000;  

生成插入SQL

do language plpgsql $$  
declare  
  v_s timestamp := '2016-01-01 00:00:00';  
begin  
  for i in 1..720 loop  
    raise notice '%', 'psql -c "insert into tbl_'||to_char(v_s,'yyyymmddhh24')||' (crt_time, sensorid, info) select '''||to_char(v_s,'yyyy-mm-dd hh24:mi:ss')||''',trunc(random()*500000), substring(md5(random()::text),1,8) from generate_series(1,50000000);" &';  
    v_s := v_s + '1 h'::interval;  
  end loop;  
end;  
$$;  

性能指标, 范围扫描, 落到单表5000万的数据量内, 毫秒级返回.

postgres=# explain (analyze,verbose,timing,buffers,costs) select * from tbl where crt_time between '2016-01-01 12:00:00' and '2016-01-01 12:30:00' and info ~ 'f[\d]{2}e27e0$' order by info <-> 'f[\d]{2}e27e0$' limit 10;  
                                                                                                        QUERY PLAN                                                                                                           
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=18918.83..18918.85 rows=10 width=45) (actual time=350.296..350.297 rows=2 loops=1)  
   Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info, ((tbl.info <-> 'f[\d]{2}e27e0$'::text))  
   Buffers: shared hit=4530  
   ->  Sort  (cost=18918.83..18931.33 rows=5001 width=45) (actual time=350.294..350.295 rows=2 loops=1)  
         Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info, ((tbl.info <-> 'f[\d]{2}e27e0$'::text))  
         Sort Key: ((tbl.info <-> 'f[\d]{2}e27e0$'::text))  
         Sort Method: quicksort  Memory: 25kB  
         Buffers: shared hit=4530  
         ->  Result  (cost=0.00..18810.76 rows=5001 width=45) (actual time=347.995..350.279 rows=2 loops=1)  
               Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info, (tbl.info <-> 'f[\d]{2}e27e0$'::text)  
               Buffers: shared hit=4530  
               ->  Append  (cost=0.00..18798.26 rows=5001 width=45) (actual time=347.976..350.254 rows=2 loops=1)  
                     Buffers: shared hit=4530  
                     ->  Seq Scan on public.tbl  (cost=0.00..0.00 rows=1 width=68) (actual time=0.001..0.001 rows=0 loops=1)  
                           Output: tbl.id, tbl.crt_time, tbl.sensorid, tbl.sensorloc, tbl.info  
                           Filter: ((tbl.crt_time >= '2016-01-01 12:00:00'::timestamp without time zone) AND (tbl.crt_time <= '2016-01-01 12:30:00'::timestamp without time zone) AND (tbl.info ~ 'f[\d]{2}e27e0$'::text))  
                     ->  Bitmap Heap Scan on public.tbl_2016010112  (cost=574.75..18798.26 rows=5000 width=45) (actual time=347.972..350.249 rows=2 loops=1)  
                           Output: tbl_2016010112.id, tbl_2016010112.crt_time, tbl_2016010112.sensorid, tbl_2016010112.sensorloc, tbl_2016010112.info  
                           Recheck Cond: (tbl_2016010112.info ~ 'f[\d]{2}e27e0$'::text)  
                           Rows Removed by Index Recheck: 4100  
                           Filter: ((tbl_2016010112.crt_time >= '2016-01-01 12:00:00'::timestamp without time zone) AND (tbl_2016010112.crt_time <= '2016-01-01 12:30:00'::timestamp without time zone))  
                           Heap Blocks: exact=4085  
                           Buffers: shared hit=4530  
                           ->  Bitmap Index Scan on idx_tbl_2016010112  (cost=0.00..573.50 rows=5000 width=0) (actual time=337.125..337.125 rows=4102 loops=1)  
                                 Index Cond: (tbl_2016010112.info ~ 'f[\d]{2}e27e0$'::text)  
                                 Buffers: shared hit=445  
 Planning time: 23.913 ms  
 Execution time: 350.383 ms  
(28 rows)  

postgres=# select * from tbl where crt_time between '2016-01-01 12:00:00' and '2016-01-01 12:30:00' and info ~ 'f[\d]{2}e27e0$' order by info <-> 'f[\d]{2}e27e0$' limit 10;  
     id     |      crt_time       | sensorid | sensorloc |   info     
------------+---------------------+----------+-----------+----------  
 1982100172 | 2016-01-01 12:00:00 |   336772 |           | f48e27e0  
 2292713691 | 2016-01-01 12:00:00 |   489110 |           | f77e27e0  
(2 rows)  

单表144亿的正则和模糊查询性能测试:

postgres=# \dt+ t_all  
                    List of relations  
 Schema | Name  | Type  |  Owner   |  Size  | Description   
--------+-------+-------+----------+--------+-------------  
 public | t_all | table | postgres | 811 GB |   
(1 row)  

postgres=# \d t_all  
                Table "public.t_all"  
  Column   |            Type             | Modifiers   
-----------+-----------------------------+-----------  
 id        | bigint                      | not null  
 crt_time  | timestamp without time zone |   
 sensorid  | integer                     |   
 sensorloc | point                       |   
 info      | text                        |   

postgres=# select count(*) from t_all;  
    count     
-------------  
 14456717312  
(1 row)  

postgres=# select * from t_all limit 10;  
     id     |      crt_time       | sensorid | sensorloc |   info     
------------+---------------------+----------+-----------+----------  
 6519272065 | 2016-01-06 10:00:00 |   493013 |           | 62255c83  
 6519272066 | 2016-01-06 10:00:00 |   309676 |           | f6c98800  
 6519272067 | 2016-01-06 10:00:00 |    43859 |           | 125a1191  
 6519272068 | 2016-01-06 10:00:00 |   495624 |           | e75cfd71  
 6519272069 | 2016-01-06 10:00:00 |    10362 |           | 7171f11c  
 6519272070 | 2016-01-06 10:00:00 |   231476 |           | 4201f809  
 6519272071 | 2016-01-06 10:00:00 |    43080 |           | a47e84e5  
 6519272072 | 2016-01-06 10:00:00 |   131292 |           | 17bc248e  
 6519272073 | 2016-01-06 10:00:00 |   486841 |           | 3303097c  
 6519272074 | 2016-01-06 10:00:00 |   491503 |           | f0c53fee  
(10 rows)  

测试数据后续放出,分表后做到秒级是没有问题的。信心从何而来呢?
因为瓶颈不在IO上,主要在数据的recheck, 把144亿数据拆分成29个5亿的表,并行执行,秒出是有可能的。

来看一个单表5亿的测试结果,秒出:

postgres=# explain (verbose,analyze,buffers,timing,costs) select * from tbl1 where info ~ 'aad.+f02' limit 10;
                                                               QUERY PLAN                                                                
-----------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=1439.79..1476.19 rows=10 width=29) (actual time=116.570..116.719 rows=10 loops=1)
   Output: id, crt_time, sensorid, info
   Buffers: shared hit=680
   ->  Bitmap Heap Scan on public.tbl1  (cost=1439.79..191054.88 rows=52103 width=29) (actual time=116.568..116.716 rows=10 loops=1)
         Output: id, crt_time, sensorid, info
         Recheck Cond: (tbl1.info ~ 'aad.+f02'::text)
         Rows Removed by Index Recheck: 38
         Heap Blocks: exact=48
         Buffers: shared hit=680
         ->  Bitmap Index Scan on tbl1_info_idx  (cost=0.00..1426.77 rows=52103 width=0) (actual time=116.495..116.495 rows=403 loops=1)
               Index Cond: (tbl1.info ~ 'aad.+f02'::text)
               Buffers: shared hit=632
 Planning time: 0.311 ms
 Execution time: 116.754 ms
(14 rows)

Time: 117.422 ms
postgres=# select * from tbl1 where info ~ 'aad.+f02' limit 10;
    id     |          crt_time          | sensorid |   info   
-----------+----------------------------+----------+----------
  17986922 | 2016-02-29 17:42:42.427639 |    75863 | aad3f02a
  19873247 | 2016-02-29 17:43:16.714945 |   174971 | 2aad5f02
  23798336 | 2016-02-29 17:44:35.369654 |   202085 | aad06f02
  28630866 | 2016-02-29 17:46:03.544462 |   463184 | baad3f02
  31458529 | 2016-02-29 17:47:00.300937 |   411670 | aad1af02
  52009687 | 2016-02-29 17:53:15.466246 |   192821 | 5aad6f02
  80769909 | 2016-02-29 18:01:31.074248 |    47993 | aadcf029
  80825896 | 2016-02-29 18:01:31.039063 |   284712 | aad14f02
  83385996 | 2016-02-29 18:02:12.699317 |    78233 | daadcf02
 102814316 | 2016-02-29 18:08:20.891412 |   359635 | aad06f02
(10 rows)

Time: 116.901 ms

全表扫描需要,

postgres=# set enable_bitmapscan=off;
SET
Time: 0.145 ms
postgres=# select * from tbl1 where info ~ 'aad.+f02' limit 10;
    id     |          crt_time          | sensorid |   info   
-----------+----------------------------+----------+----------
  31458529 | 2016-02-29 17:47:00.300937 |   411670 | aad1af02
  52009687 | 2016-02-29 17:53:15.466246 |   192821 | 5aad6f02
  80769909 | 2016-02-29 18:01:31.074248 |    47993 | aadcf029
  80825896 | 2016-02-29 18:01:31.039063 |   284712 | aad14f02
  83385996 | 2016-02-29 18:02:12.699317 |    78233 | daadcf02
 102814316 | 2016-02-29 18:08:20.891412 |   359635 | aad06f02
 105236847 | 2016-02-29 18:09:56.914795 |      876 | aadbf026
 108524272 | 2016-02-29 18:10:47.39312  |   338071 | 2aad2f02
 128169786 | 2016-02-29 18:17:52.105948 |   262400 | aad0f028
 135935810 | 2016-02-29 18:20:43.265139 |   487673 | aad7f021
(10 rows)
Time: 98903.073 ms

性能对比图表:
1000万数据对比
_
5亿数据对比
_1
1000万数据btree bit or|and与gin对比
_2
144亿分区表对比
_3

大数据量的优化方法,例如百亿级别以上的数据量,如何能做到秒级的模糊查询响应。
对于单机,可以使用分区,同时使用并行查询,充分使用CPU的功能。
或者使用MPP, SHARDING架构,利用多机的资源。

原则,减少recheck,尽量扫描搜索到最终需要的结果(大量扫描,大量remove checked false row, 全表和索引都存在这种现象)

[补充]
.1. 测试用的主机配置简单描述
普通x86, 24核,1xxG 内存,SSD硬盘。

.2. 收到了一位朋友的疑问,
德哥,首先要问你一个问题, 为什么你使用md5 前8位生成 数据 ? md5 最小位数就是16位 , 你这样做究竟有什么数学原因导致要前8位字符?

回复如下:
首先MD5计算的结果是一个128bit的hex,PostgreSQL将结果以文本的形式输出,所以看到的是32位长度的字符串,

rfc1321

3.1 Step 1. Append Padding Bits
3.2 Step 2. Append Length
3.3 Step 3. Initialize MD Buffer
3.4 Step 4. Process Message in 16-Word Blocks
3.5 Step 5. Output

4. Summary
   The MD5 message-digest algorithm is simple to implement, and provides
   a "fingerprint" or message digest of a message of arbitrary length.
   It is conjectured that the difficulty of coming up with two messages
   having the same message digest is on the order of 2^64 operations,
   and that the difficulty of coming up with any message having a given
   message digest is on the order of 2^128 operations. The MD5 algorithm
   has been carefully scrutinized for weaknesses. It is, however, a
   relatively new algorithm and further security analysis is of course
   justified, as is the case with any new proposal of this sort.


PG代码
/*
 * Create an md5 hash of a text string and return it as hex
 *
 * md5 produces a 16 byte (128 bit) hash; double it for hex
 */
#define MD5_HASH_LEN  32

Datum
md5_text(PG_FUNCTION_ARGS)
{
    text       *in_text = PG_GETARG_TEXT_PP(0);
    size_t      len;
    char        hexsum[MD5_HASH_LEN + 1];

    /* Calculate the length of the buffer using varlena metadata */
    len = VARSIZE_ANY_EXHDR(in_text);

    /* get the hash result */
    if (pg_md5_hash(VARDATA_ANY(in_text), len, hexsum) == false)
        ereport(ERROR,
                (errcode(ERRCODE_OUT_OF_MEMORY),
                 errmsg("out of memory")));

    /* convert to text and return it */
    PG_RETURN_TEXT_P(cstring_to_text(hexsum));
}

/*
 *  pg_md5_hash
 *
 *  Calculates the MD5 sum of the bytes in a buffer.
 *
 *  SYNOPSIS      #include "md5.h"
 *                int pg_md5_hash(const void *buff, size_t len, char *hexsum)
 *
 *  INPUT         buff    the buffer containing the bytes that you want
 *                        the MD5 sum of.
 *                len     number of bytes in the buffer.
 *
 *  OUTPUT        hexsum  the MD5 sum as a '\0'-terminated string of
 *                        hexadecimal digits.  an MD5 sum is 16 bytes long.
 *                        each byte is represented by two heaxadecimal
 *                        characters.  you thus need to provide an array
 *                        of 33 characters, including the trailing '\0'.
 *
 *  RETURNS       false on failure (out of memory for internal buffers) or
 *                true on success.
 *
 *  STANDARDS     MD5 is described in RFC 1321.
 *
 *  AUTHOR        Sverre H. Huseby <sverrehu@online.no>
 *
 */
bool
pg_md5_hash(const void *buff, size_t len, char *hexsum)
{
    uint8       sum[16];

    if (!calculateDigestFromBuffer(buff, len, sum))
        return false;

    bytesToHex(sum, hexsum);
    return true;
}

static int
calculateDigestFromBuffer(const uint8 *b, uint32 len, uint8 sum[16])
{
    register uint32 i,
                j,
                k,
                newI;
    uint32      l;
    uint8      *input;
    register uint32 *wbp;
    uint32      workBuff[16],
                state[4];

    l = len;

    state[0] = 0x67452301;
    state[1] = 0xEFCDAB89;
    state[2] = 0x98BADCFE;
    state[3] = 0x10325476;

    if ((input = createPaddedCopyWithLength(b, &l)) == NULL)
        return 0;

    for (i = 0;;)
    {
        if ((newI = i + 16 * 4) > l)
            break;
        k = i + 3;
        for (j = 0; j < 16; j++)
        {
            wbp = (workBuff + j);
            *wbp = input[k--];
            *wbp <<= 8;
            *wbp |= input[k--];
            *wbp <<= 8;
            *wbp |= input[k--];
            *wbp <<= 8;
            *wbp |= input[k];
            k += 7;
        }
        doTheRounds(workBuff, state);
        i = newI;
    }
    free(input);

    j = 0;
    for (i = 0; i < 4; i++)
    {
        k = state[i];
        sum[j++] = (k & 0xff);
        k >>= 8;
        sum[j++] = (k & 0xff);
        k >>= 8;
        sum[j++] = (k & 0xff);
        k >>= 8;
        sum[j++] = (k & 0xff);
    }
    return 1;
}


postgres=# select length(md5(random()::text)),md5(random()::text) from generate_series(1,10);
 length |               md5                
--------+----------------------------------
     32 | 4b0fcafd0f9d189cceade2812e4aa396
     32 | 9169f49f0c059a65de3325a20068eb8e
     32 | 7df4b60638972f1372fde91e3d2eee50
     32 | 4fc6816aa88224163dda3e242f3e16f0
     32 | 518870a2c8a9cfe6cba018916f5388a9
     32 | b46b63c409532e5c973ddc27a5e49ce4
     32 | e24e9d63926094046aa2b300dfa8e986
     32 | 3f1ca7c5ce5159a0df17729f81e24925
     32 | 5756f0925eca4c3801c4a49cf9b68023
     32 | ed54795fcbe9491f4e5a00ec2cf323ee
(10 rows)
另外,截取前8位的目的是生成一个8位长的随机字符串,在车牌,QQ,条形码等数据类型中长度的一个折中。
其实要测试1632位长的随机字符串也可以的,我稍后更新一下对应长度的测试数据。
感谢您的关注。
还有一些PG文章推荐给您,了解一下PostgreSQL:
高并发的优化
http://blog.163.com/digoal@126/blog/static/16387704020159853541614/
秒杀性能调优
http://blog.163.com/digoal@126/blog/static/16387704020158149538415/
每天万亿级记录流式处理
http://blog.163.com/digoal@126/blog/static/1638770402015111543639382/
百亿级数据量地理位置检索
http://blog.163.com/digoal@126/blog/static/163877040201601875129497/
水平分片
http://blog.163.com/digoal@126/blog/static/16387704020161239252998/
数字计算CPU硬解
http://blog.163.com/digoal@126/blog/static/1638770402016237454462/
PG的优化器逻辑推理能力源码剖析
http://blog.163.com/digoal@126/blog/static/163877040201612374931160/
TPC-C 极限调优
https://github.com/digoal/pgsql_admin_script/blob/master/pgsql_perf_tuning

以下是32字符长的测试
单机10亿 32位长度 正则,模糊检索 性能图表:
_

详细记录:
插入10亿数据,每条记录存储32位长随机字符串。

postgres=# create table t_regexp (info text);  
CREATE TABLE  
postgres=# insert into t_regexp select md5(random()::text) from generate_series(1,1000000000);  
INSERT 0 1000000000  
postgres=# create index idx_t_regexp_gin on t_regexp using gin (info gin_trgm_ops);  
CREATE INDEX  
postgres=# create index idx_t_regexp_1 on t_regexp (info);  
CREATE INDEX  
postgres=# create index idx_t_regexp_2 on t_regexp (reverse(info));  
CREATE INDEX  

使用auto_explain收集性能测试数据:

load 'auto_explain';    
set auto_explain.log_analyze =true;     
set auto_explain.log_buffers =true;    
set auto_explain.log_nested_statements=true;    
set auto_explain.log_timing=true;    
set auto_explain.log_triggers=true;    
set auto_explain.log_verbose=true;    
set auto_explain.log_min_duration=0;    
set client_min_messages ='log';    
set work_mem='2GB';    

测试数据概貌,总记录数10亿, 唯一数约8亿 如下:

digoal=> select count(*) from t_regexp ;  
   count      
------------  
 1000000000  
(1 row)  
Time: 18547.746 ms  

digoal=> select count(*) from (select info from t_regexp group by info) t;  
   count     
-----------  
 799444838  
(1 row)  

带前缀模糊查询性能
有结果性能

digoal=# select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7e' limit 10;  
LOG:  duration: 0.351 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7e' limit 10;  
Limit  (cost=0.15..8.17 rows=1 width=39) (actual time=0.152..0.346 rows=2 loops=1)  
  Output: ctid, info  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=0.15..8.17 rows=1 width=39) (actual time=0.150..0.342 rows=2 loops=1)  
        Output: ctid, info  
     ctid     |               info                 
--------------+----------------------------------  
 (14720,1)    | 9def5fe6343a5938b23af38444b7e350  
 (379127,105) | 9def5fe6343a5938b23af38444b7e350  
(2 rows)  
Time: 7.952 ms  

无结果性能

digoal=# select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7a' limit 10;  
LOG:  duration: 0.447 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ '^9def5fe6343a5938b23af38444b7a' limit 10;  
Limit  (cost=0.15..8.17 rows=1 width=39) (actual time=0.443..0.443 rows=0 loops=1)  
  Output: ctid, info  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=0.15..8.17 rows=1 width=39) (actual time=0.441..0.441 rows=0 loops=1)  
        Output: ctid, info  
 ctid | info   
------+------  
(0 rows)  
Time: 7.968 ms  

带后缀模糊查询性能
有结果性能

digoal=# select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495';  
LOG:  duration: 5.287 ms  plan:  
Query Text: select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495';  
Remote Fast Query Execution  (cost=0.00..0.00 rows=0 width=0) (actual time=4.943..5.281 rows=1 loops=1)  
  Output: t_regexp.ctid, t_regexp.info  
  Node/s: data1, data10, data11, data12, data13, data14, data15, data16, data2, data3, data4, data5, data6, data7, data8, data9  
  Remote query: SELECT ctid, info FROM t_regexp WHERE (reverse(info) ~ '^1e346e5efc7703f11495'::text)  
    ctid    |               info                 
------------+----------------------------------  
 (19928,46) | cc302768b6a459411f3077cfe5e643e1  
(1 row)  
Time: 6.079 ms  

无结果性能

digoal=# select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495123';  
LOG:  duration: 4.157 ms  plan:  
Query Text: select ctid,* from t_regexp where reverse(info) ~ '^1e346e5efc7703f11495123';  
Remote Fast Query Execution  (cost=0.00..0.00 rows=0 width=0) (actual time=4.154..4.154 rows=0 loops=1)  
  Output: t_regexp.ctid, t_regexp.info  
  Node/s: data1, data10, data11, data12, data13, data14, data15, data16, data2, data3, data4, data5, data6, data7, data8, data9  
  Remote query: SELECT ctid, info FROM t_regexp WHERE (reverse(info) ~ '^1e346e5efc7703f11495123'::text)  
 ctid | info   
------+------  
(0 rows)  
Time: 4.930 ms  

前后模糊查询性能
有结果性能

digoal=# select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c949' order by info <-> '6ccd8ca827b0526cd57a71c949' limit 10;  
LOG:  duration: 3066.193 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c949' order by info <-> '6ccd8ca827b0526cd57a71c949' limit 10;  
Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3066.175..3066.176 rows=1 loops=1)  
  Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c949'::text))  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3066.173..3066.174 rows=1 loops=1)  
        Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c949'::text)  
    ctid      |               info                 
--------------+----------------------------------  
 (459019,106) | 8536ccd8ca827b0526cd57a71c949ab2  
(1 row)  
Time: 3074.907 ms  

无结果性能

digoal=# select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  
LOG:  duration: 3099.348 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  
Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3099.341..3099.341 rows=0 loops=1)  
  Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3099.339..3099.339 rows=0 loops=1)  
        Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c123'::text)  
 ctid | info   
------+------  
(0 rows)  
Time: 3108.698 ms  

使用了GIN索引

digoal=# explain (verbose) select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  
LOG:  duration: 0.000 ms  plan:  
Query Text: explain (verbose) select ctid,* from t_regexp where info ~ '6ccd8ca827b0526cd57a71c123' order by info <-> '6ccd8ca827b0526cd57a71c123' limit 10;  
Limit  (cost=72.03..72.03 rows=1 width=39)  
  Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39)  
        Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c123'::text)  
        ->  Limit  (cost=72.03..72.03 rows=1 width=39)  
              Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))  
              ->  Sort  (cost=72.03..72.03 rows=1 width=39)  
                    Output: ctid, info, ((info <-> '6ccd8ca827b0526cd57a71c123'::text))  
                    Sort Key: ((t_regexp.info <-> '6ccd8ca827b0526cd57a71c123'::text))  
                    ->  Bitmap Heap Scan on public.t_regexp  (cost=68.00..72.02 rows=1 width=39)  
                          Output: ctid, info, (info <-> '6ccd8ca827b0526cd57a71c123'::text)  
                          Recheck Cond: (t_regexp.info ~ '6ccd8ca827b0526cd57a71c123'::text)  
                          ->  Bitmap Index Scan on idx_t_regexp_gin  (cost=0.00..68.00 rows=1 width=0)  
                                Index Cond: (t_regexp.info ~ '6ccd8ca827b0526cd57a71c123'::text)  

正则匹配查询性能
有结果性能(例如0和8,B,6和b混淆)

digoal=# select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' limit 10;  
LOG:  duration: 3181.592 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb' limit 10;  
Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3181.568..3181.569 rows=2 loops=1)  
  Output: ctid, info, ((info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb'::text))  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3181.566..3181.566 rows=2 loops=1)  
        Output: ctid, info, (info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]efb'::text)  
     ctid     |               info                 
--------------+----------------------------------  
 (260416,110) | b44c9616bfa86a722daa9596f86ebefb  
 (504007,4)   | b44c9616bfa86a722daa9596f86ebefb  
(2 rows)  
Time: 3189.666 ms  

又如再加难度,中间忘记了几个字符,只知道是数字,并且可能是2到5个数字

digoal=# select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa[\d]{2,5}6f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb' limit 10;  
LOG:  duration: 3249.156 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa[\d]{2,5}6f86e[b|6]efb' order by info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb' limit 10;  
Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3249.136..3249.137 rows=2 loops=1)  
  Output: ctid, info, ((info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb'::text))  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3249.134..3249.134 rows=2 loops=1)  
        Output: ctid, info, (info <-> 'b44c9616bfa[8|0|B]6a722daa[0-9]{2,5}6f86e[b|6]efb'::text)  
     ctid     |               info                 
--------------+----------------------------------  
 (260416,110) | b44c9616bfa86a722daa9596f86ebefb  
 (504007,4)   | b44c9616bfa86a722daa9596f86ebefb  
(2 rows)  
Time: 3257.435 ms  

无结果性能

digoal=# select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' limit 10;  
LOG:  duration: 3086.572 ms  plan:  
Query Text: select ctid,* from t_regexp where info ~ 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' order by info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12' limit 10;  
Limit  (cost=72.03..72.03 rows=1 width=39) (actual time=3086.567..3086.567 rows=0 loops=1)  
  Output: ctid, info, ((info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12'::text))  
  ->  Remote Subquery Scan on all (data1,data10,data11,data12,data13,data14,data15,data16,data2,data3,data4,data5,data6,data7,data8,data9)  (cost=72.03..72.03 rows=1 width=39) (actual time=3086.565..3086.565 rows=0 loops=1)  
        Output: ctid, info, (info <-> 'b44c9616bfa[8|0|B]6a722daa9596f86e[b|6]e12'::text)  
 ctid | info   
------+------  
(0 rows)  
Time: 3094.683 ms  

多机 1000亿级别的性能测试,下周发出。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
7月前
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错之往GREENPLUM 6 写数据,用postgresql-42.2.9.jar 报 ON CONFLICT (uuid) DO UPDATE SET 语法有问题。怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
6月前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
1014 0
|
6月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之使用Flink CDC读取PostgreSQL数据时如何指定编码格式
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
102 0
|
4月前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
415 0
|
4月前
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
开发框架 关系型数据库 数据库
在 PostgreSQL 中,解决图片二进制数据,由于bytea_output参数问题导致显示不正常的问题。
在 PostgreSQL 中,解决图片二进制数据,由于bytea_output参数问题导致显示不正常的问题。
|
6月前
|
关系型数据库 5G PostgreSQL
postgreSQL 导出数据、导入
postgreSQL 导出数据、导入
57 1
|
7月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之如何使用PostgreSQL2.4.1从指定时间戳同步数据
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
SQL 关系型数据库 数据库
实时计算 Flink版产品使用合集之同步PostgreSQL数据时,WAL 日志无限增长,是什么导致的
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之在使用 DataWorks 数据集成同步 PostgreSQL 数据库中的 Geometry 类型数据如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
90 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版