PostgreSQL 与基友们的故事之 - Redis (无限缓存,实时标签...)

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 在PostgreSQL中直接读写REDIS。好处多多,可以降低应用层设计的复杂度,减少交互次数,降低RT。同时还能使用redis作为PostgreSQL的二级缓存, 提升数据库的性能。PostgreSQL的好基友还真多,redis也是其中一个。 下面简单的介绍一下redis_fdw插件的安装和

在PostgreSQL中直接读写redis。
好处多多,可以降低应用层设计的复杂度,减少交互次数,降低RT。
应用场景举例:
.1. 使用redis作为PostgreSQL的二级缓存, 提升数据库的性能。

例如在生产中有多台redis主机或集群,使用redis扩展PG的二级缓存能力,减少对IO的需求。   
这个完全可以做成触发器形式的,数据插入或更新的时候,同时插入或更新到redis。  
删除的时候,从redis删除。  

用来做二级缓存时,更新从postgresql直接操作redis来减少总的交互次数。
查询时直接查询redis或者从postgresql去查询redis都是可以的,如果是乐观的情况,从redis去查是OK的,如果是悲观的情况则从postgresql去读,同时写入redis.
.2.例如用来计算记录的COUNT数,数据插入或删除的时候,记录自增或自减。
.3. 利用来对数据统计标签,例如数据入库时,按照数据的用户ID以及记录的行为习惯进行标签化,将标签信息直接存入REDIS,作为一个实时标签系统。
1
2
当然还有更多的玩法,等待发掘。
PostgreSQL的好基友还真多,redis也是其中一个。

下面简单的介绍一下redis_fdw插件的安装和使用以及目前的限制。
注意redis可以在其他主机上,不要被我的文档局限了。
redis_fdw已经有很多用户在生产中使用,而且PG的fdw接口是非常靠谱的。

建议使用新版的gcc
http://blog.163.com/digoal@126/blog/static/163877040201601313814429/
安装好GCC之后

which gcc
~/gcc4.9.3/bin/gcc

安装和部署redis

cd ~
wget http://download.redis.io/releases/redis-3.0.7.tar.gz

tar -zxvf redis-3.0.7.tar.gz

cd redis-3.0.7

make -j 32
make test

make PREFIX=/home/digoal/redis install

cd /home/digoal/redis
cp ~/redis-3.0.7/redis.conf ./

mkdir /disk1/digoal/redis

vi redis.conf
daemonize yes
pidfile /disk1/digoal/redis/redis.pid
port 6379
tcp-backlog 511
bind 0.0.0.0
timeout 60
tcp-keepalive 60
loglevel notice
logfile "/disk1/digoal/redis/redis.log"
databases 16
save 900 1
save 300 10
save 60 10000
stop-writes-on-bgsave-error yes
rdbcompression yes
rdbchecksum yes
dbfilename dump.rdb
dir /disk1/digoal/redis/
requirepass digoal
maxclients 10000
maxmemory 10gb
maxmemory-policy noeviction
maxmemory-samples 5
appendonly no
appendfilename "appendonly.aof"
appendfsync everysec
no-appendfsync-on-rewrite no
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
aof-load-truncated yes
lua-time-limit 5000
slowlog-log-slower-than 10000
slowlog-max-len 128
latency-monitor-threshold 0
notify-keyspace-events ""
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
list-max-ziplist-entries 512
list-max-ziplist-value 64
set-max-intset-entries 512
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
hll-sparse-max-bytes 3000
activerehashing yes
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
hz 10
aof-rewrite-incremental-fsync yes

./redis-server ./redis.conf

./redis-cli -h 127.0.0.1 -p 6379 -a digoal

测试redis可用性

127.0.0.1:6379> help
redis-cli 3.0.7
Type: "help @<group>" to get a list of commands in <group>
      "help <command>" for help on <command>
      "help <tab>" to get a list of possible help topics
      "quit" to exit

测试一下redis的性能

cd ~/redis-3.0.7/src
./redis-benchmark -h 127.0.0.1 -p 6379 -n 1000000 -c 32
====== PING_INLINE ======
  1000000 requests completed in 14.35 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69676.70 requests per second

====== PING_BULK ======
  1000000 requests completed in 14.39 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69516.86 requests per second

====== SET ======
  1000000 requests completed in 14.42 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69328.90 requests per second

====== GET ======
  1000000 requests completed in 14.47 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69094.18 requests per second

====== INCR ======
  1000000 requests completed in 14.38 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69521.70 requests per second

====== LPUSH ======
  1000000 requests completed in 14.47 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69118.05 requests per second

====== LPOP ======
  1000000 requests completed in 14.49 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69008.35 requests per second

====== SADD ======
  1000000 requests completed in 14.40 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69458.91 requests per second

====== SPOP ======
  1000000 requests completed in 14.58 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 1 milliseconds
100.00% <= 1 milliseconds
68577.70 requests per second

====== LPUSH (needed to benchmark LRANGE) ======
  1000000 requests completed in 14.40 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69463.74 requests per second

====== LRANGE_100 (first 100 elements) ======
  1000000 requests completed in 13.74 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
72796.09 requests per second

====== LRANGE_300 (first 300 elements) ======
  1000000 requests completed in 14.42 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69328.90 requests per second

====== LRANGE_500 (first 450 elements) ======
  1000000 requests completed in 14.38 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69550.70 requests per second

====== LRANGE_600 (first 600 elements) ======
  1000000 requests completed in 14.43 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
69319.29 requests per second

====== MSET (10 keys) ======
  1000000 requests completed in 14.20 seconds
  32 parallel clients
  3 bytes payload
  keep alive: 1

100.00% <= 0 milliseconds
70417.58 requests per second

redis的用法可参考
http://redis.io/commands

假设PostgreSQL已安装好,以PostgreSQL 9.5为例:
redis_fdw有几个分支,请根据PostgreSQL的版本切换分支使用。
安装redis_fdw,需要依赖redis的c接口,hiredis。

cd ~
git clone https://github.com/pg-redis-fdw/redis_fdw.git

cd redis_fdw/
git checkout REL9_5_STABLE

git clone https://github.com/redis/hiredis
cd hiredis
make
make PREFIX=/home/digoal/hiredis_bin install

修改redis_fdw的Makefile

vi Makefile
# 末尾追加

LDFLAGS += -L/home/digoal/hiredis_bin/lib

安装redis_fdw

export PATH=/home/digoal/pgsql9.5.0/bin:$PATH
make USE_PGXS=1
make USE_PGXS=1 install

将redis_fdw部署到需要访问redis的PostgreSQL数据库中

cd ~
$ psql
psql (9.5.0)
Type "help" for help.

postgres=# create extension redis_fdw;
CREATE EXTENSION

测试redis_fdw的用法,创建server,创建foreign table。
通过SQL可以写入和读取redis中的数据。

postgres=# CREATE SERVER redis_server
postgres-#     FOREIGN DATA WRAPPER redis_fdw
postgres-#     OPTIONS (address '127.0.0.1', port '6379');
CREATE SERVER

postgres=# CREATE FOREIGN TABLE redis_db0 (key text, val text)
postgres-#     SERVER redis_server
postgres-#     OPTIONS (database '0');
CREATE FOREIGN TABLE

postgres=# 
postgres=# CREATE USER MAPPING FOR PUBLIC
postgres-#     SERVER redis_server
postgres-#     OPTIONS (password 'digoal');
CREATE USER MAPPING

postgres=# CREATE FOREIGN TABLE myredishash (key text, val text[])
postgres-#     SERVER redis_server
postgres-#     OPTIONS (database '0', tabletype 'hash', tablekeyprefix 'mytable:');
CREATE FOREIGN TABLE

postgres=# INSERT INTO myredishash (key, val)
   VALUES ('mytable:r1','{prop1,val1,prop2,val2}');
INSERT 0 1

postgres=# UPDATE myredishash
postgres-#     SET val = '{prop3,val3,prop4,val4}'
postgres-#     WHERE key = 'mytable:r1';
UPDATE 1

postgres=# select * from myredishash ;
    key     |           val           
------------+-------------------------
 mytable:r1 | {prop3,val3,prop4,val4}
(1 row)

postgres=# select * from myredishash ;
    key     |           val           
------------+-------------------------
 mytable:r1 | {prop3,val3,prop4,val4}
(1 row)

postgres=# DELETE from myredishash
postgres-#     WHERE key = 'mytable:r1';
DELETE 1

postgres=# select * from myredishash ;
 key | val 
-----+-----
(0 rows)

postgres=# CREATE FOREIGN TABLE myredis_s_hash (key text, val text)
postgres-#     SERVER redis_server
postgres-#     OPTIONS (database '0', tabletype 'hash',  singleton_key 'mytable');
CREATE FOREIGN TABLE

postgres=# INSERT INTO myredis_s_hash (key, val)
postgres-#    VALUES ('prop1','val1'),('prop2','val2');
INSERT 0 2

postgres=# select * from myredis_s_hash ;
  key  | val  
-------+------
 prop1 | val1
 prop2 | val2
(2 rows)

postgres=# UPDATE myredis_s_hash
postgres-#     SET val = 'val23'
postgres-#     WHERE key = 'prop1';
UPDATE 1

postgres=# select * from myredis_s_hash ;
  key  |  val  
-------+-------
 prop1 | val23
 prop2 | val2
(2 rows)

postgres=# DELETE from myredis_s_hash
postgres-#     WHERE key = 'prop2';
DELETE 1

postgres=# \set VERBOSITY verbose
postgres=# INSERT INTO myredis_s_hash (key, val)
   VALUES ('prop1','val1'),('prop2','val2');
ERROR:  23505: key already exists: prop1
LOCATION:  redisExecForeignInsert, redis_fdw.c:2158
postgres=# select * from myredis_s_hash ;       
  key  |  val  
-------+-------
 prop1 | val23
(1 row)

redis_fdw详细的用法介绍
.1. CREATE SERVER 支持的 option
指定地址和端口

address: The address or hostname of the Redis server. Default: 127.0.0.1
port: The port number on which the Redis server is listening. Default: 6379

.2. CREATE USER MAPPING 支持的 option
指定密码

password: The password to authenticate to the Redis server with. Default:

.3. CREATE FOREIGN TABLE 支持的 option
指定数据库ID
表类型(hash,list,set,zset或scalar)
key 前缀 key 集合 singleton_key 指定KEY (三选一)

database: The numeric ID of the Redis database to query. Default: 0
(9.2 and later) tabletype: can be 'hash', 'list', 'set' or 'zset' Default: none, meaning only look at scalar values.
(9.2 and later) tablekeyprefix: only get items whose names start with the prefix Default: none
(9.2 and later) tablekeyset: fetch item names from the named set Default: none
(9.2 and later) singleton_key: get all the values in the table from a single named object. Default: none, meaning don't just use a single object.

You can only have one of tablekeyset and tablekeyprefix, and if you use singleton_key you can't have either.
Structured items are returned as array text, or, if the value column is a text array as an array of values. 
In the case of hash objects this array is an array of key, value, key, value ...
Singleton key tables are returned as rows with a single column of text in the case of lists sets and scalars, rows with key and value text columns for hashes, and rows with a value text columns and an optional numeric score column for zsets.

限制
.1. There's no such thing as a cursor in Redis, or MVCC, which leaves us with no way to atomically query the database for the available keys and then fetch each value.
So, we get a list of keys to begin with, and then fetch whatever records still exist as we build the tuples.

如果不带条件的查询,或者创建foreign table时没有指定单一KEY,则需要返回集合
redis_fdw/redis_fdw.c

/* initial cursor */
#define ZERO "0"
/* redis default is 10 - let's fetch 1000 at a time */
#define COUNT " COUNT 1000"

/*
 * redisBeginForeignScan
 *        Initiate access to the database
 */
static void
redisBeginForeignScan(ForeignScanState *node, int eflags)
{
...
    /* Execute the query */
    if (festate->singleton_key)
    {
        /*
         * We're not using cursors for now for singleton key tables. The
         * theory is that we don't expect them to be so large in normal use
         * that we would get any significant benefit from doing so, and in any
         * case scanning them in a single step is not going to tie things up
         * like scannoing the whole Redis database could.
         */
    ...
    }
    else if (qual_value && pushdown)
    {
        /*
         * if we have a qual, make sure it's a member of the keyset or has the
         * right prefix if either of these options is specified.
         *
         * If not set row to -1 to indicate failure
         */
         ...
    else
    {
        /* no qual - do a cursor scan */
        if (festate->keyset)
        {
            festate->cursor_search_string = "SSCAN %s %s" COUNT;
            reply = redisCommand(context, festate->cursor_search_string,
                                 festate->keyset, ZERO);
        }
        else if (festate->keyprefix)
        {
            festate->cursor_search_string = "SCAN %s MATCH %s*" COUNT;
            reply = redisCommand(context, festate->cursor_search_string,
                                 ZERO, festate->keyprefix);
        }
        else
        {
            festate->cursor_search_string = "SCAN %s" COUNT;
            reply = redisCommand(context, festate->cursor_search_string, ZERO);
        }
    }
...

.2. We can only push down a single qual to Redis, which must use the TEXTEQ operator, and must be on the 'key' column.

目录
相关文章
|
5月前
|
Web App开发 存储 缓存
如何精准清除特定类型或标签的缓存数据?
如何精准清除特定类型或标签的缓存数据?
508 57
|
7月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
3月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
223 1
Redis专题-实战篇二-商户查询缓存
|
2月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
7月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
1085 0
|
3月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
7月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
263 32
|
7月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
207 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
9月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
620 16
Redis应用—8.相关的缓存框架

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多