HTAP数据库(OLTP+OLAP) - 数据库典型架构 优缺点剖析(shard VS shared)

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS SQL Server,基础系列 2核4GB
简介:

标签

PostgreSQL , 共享分布式存储 , 存储计算能力。


背景

随着互联网的发展,数据爆炸性的增长,数据库逐渐成为了很多业务的绊脚石,很多业务也哭着喊着要上分布式数据库(个人认为大部分是高估了自己的业务)。

分布式数据库又分很多流派,比如重点要说的sharding和共享分布式存储的架构,它们有着什么样的优缺点呢?

sharding vs 共享分布式存储 数据库架构

pic

pic

如果要在单机并行能力的前提下,再实现多机器并行,可以有两种玩法:

第一种玩法,可以带其他产品一起玩,用PostgreSQL 10+的fdw+append parallel+继承+pushdown(join,agg,where,sort,...)+merge sort,可以实现对任意产品的多机并行(比如后端可以是MySQL)。

pic

第二种玩法,更加的先进,节点间不仅共享数据,而且能直接通讯,每个节点运算数据的一部分(至少需要改进优化器实现这个功能),多机并行,任意表任意字段JOIN,多阶段聚合等都能上阵,简单来说就是具备MPP的能力。

pic

citus有这样的潜质,当然需要适配共享存储架构进行改造。

点评

1、作为OLTP业务,使用sharding带来的问题较多,有点得不偿失。

1、1. 扩容不方便(数据重分布)

1、2. 分布键变更很麻烦

1、3. 分布键选择(架构设计)谨慎

1、4. 跨库JOIN性能差,甚至只能按分布键JOIN,其他字段不支持JOIN。(因为这种产品架构数据节点之间是孤岛,数据需要在孤岛之间交互,需要通过上层的中间件节点,而这样的话,如果有跨库JOIN,就需要将数据收到中间件节点再JOIN,性能差是可想而知的。)

1、5. 分布式事务性能差,甚至不支持分布式事务。

1、6. SQL限制多、功能缺失多

1、7. 应用改造成本巨大

1、8. 全局一致性时间点恢复几乎不可实现

2、作为OLAP业务,如果使用sharding(MPP)架构,是值得的,可以充分利用多机的计算能力、IO能力,提高处理吞吐,例如阿里云的HybridDB for PG。

而如果使用中间件的sharding形态,则不适合OLAP业务。(原因是节点间不支持互通,在AP中有大量的JOIN需求,节点间不同带来一个问题,JOIN需要将数据汇聚到中间件节点执行,导致非常慢,几乎不可用)

HDB PG是MPP形态的产品,计算节点之间可以相互通讯,任意列的JOIN都不存在问题,同时还支持行列混合,多阶聚合的功能,是专门为OLAP场景打造的一款PB级分布式分析数据库。

pic

《阿里云HybridDB for PostgreSQL实践 - 多阶聚合》

阿里云的HybridDB for PG

HDB PG支撑了很多海量分析的业务场景。

pic

3、作为HTAP(oltp+olap)业务,使用共享分布式存储,一写多读的架构,是目前最先进的架构。

3、1. 实例扩容方便(秒级新增只读节点)

3、2. 存储扩容方便(几乎无限扩展IO、带宽)

3、3. 不存在分布键问题

3、4. 不存在跨库JOIN问题

3、5. 不存在分布式事务问题

3、6. SQL没有任何限制

3、7. 应用无需改造

3、8. 支持全局一致性时间点恢复

3、9. 只读节点延迟毫秒内

3、10. 所有节点都支持并行计算

3、11. 分布式存储:存储和引擎分离后,存储可以专心支持多副本,支持跨域容灾,支持高带宽,支持几乎无限的扩容能力。同时与数据库引擎深度结合,支持硬件级计算、加解密、加解压、数据过滤、类型预处理等能力。大幅度降低数据传输和上层处理的压力。

目前阿里云推出的PolarDB正是这种架构,已支持MySQL协议,正在支持PostgreSQL协议(PostgreSQL具备了先天的优势(向量计算、并行计算、JIT、哈希聚合、扩展列存、继承、等一系列特性),势必成为HTAP的顶尖产品)。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
2月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
3月前
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
54 2
|
3月前
|
存储 边缘计算 运维
实时数仓Hologres发展问题之实时数仓对Lambda架构的问题如何解决
实时数仓Hologres发展问题之实时数仓对Lambda架构的问题如何解决
63 2
|
18天前
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
37 1
|
1月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
178 1
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
1月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
68 1
|
1月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
3月前
|
数据挖掘 OLAP OLTP
深入解析:OLTP与OLAP的区别与联系
【8月更文挑战第31天】
1200 0
|
3月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
954 2
|
3月前
|
SQL 分布式计算 调度
实时数仓 Hologres操作报错合集之在与PostgreSOL数据库进行通信时出现报错,如何解决
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。