【机器学习PAI实践五】机器学习眼中的《人民的名义》

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 一、背景最近热播的反腐神剧“人民的名义”掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用。笔者在平日追剧之余,也尝试通过机器学习算法对人民的名义的部分剧集文本内容进行了文本分析,希望从数据的角度得到一些输入。本文使用阿里云机器学习PAI,主要针对以下几个方面进行了实验: 分词以及词频统计每

一、背景


最近热播的反腐神剧“人民的名义”掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用。笔者在平日追剧之余,也尝试通过机器学习算法对人民的名义的部分剧集文本内容进行了文本分析,希望从数据的角度得到一些输入。

本文使用阿里云机器学习PAI,主要针对以下几个方面进行了实验:

  • 分词以及词频统计
  • 每一章的关键词提取
  • 每一章的文本摘要
  • 每一章文本之间的相似度分析

实验流程以及数据可以在阿里云机器学习PAI的社区直接使用,只要点击“去PAI平台创建”按钮即可在自己的项目下生成实验。社区部分截图:

二、数据集介绍

数据源:本文数据为人民的名义部分剧集文本,一共分成1-9个章节。
具体字段如下:

字段名 含义 类型 描述
id 文章唯一标识 string 文章标识
content 文章内容 string 部分剧集内容

数据截图:

三、数据探索流程

首先,实验流程图:

1.分词以及停用词

分词是文本分析的基础,但是在“人民的名义”这样的文本中会有很多特有名词,是分词算法很难区分的。比如“侯亮平”、“沙瑞金”、“大风厂”等,所以我们需要在split word组件中加入一个词库,帮助分词组件可以对人名做正确的分词处理。加入的词库fufeitest.splite_w如下图:

另外,文本中一些“的”、“地”、“得”这样的助词以及各种标点符号也需要去掉,这些词是没有意义的,对文本分析有干扰,这些词可以通过“停用词过滤”组件去除。最终通过分词以及停用词过滤组件操作之后,文本内容被整理成了如下图形态:

2.关键词提取及词频统计

通过“词频统计”组件可以查看每一章中各个词语出现的频率,如图所示,id为1的文章中每个词语出现的次数:

“关键词”提取组件可以返回每个文章中关键的词语以及权重,(如果我们在停用词过滤那里处理的更细致,这部分效果会更好),通过这个结果可以看到每一章的关键人物有哪些,以及他们的权重排名:

3.文本摘要

“文本摘要”组件可以帮助您快速的浏览每一章节的关键内容,返回的是全文最关键的句子,我这里设置的是返回前三关键的句子:

截取的是第9章的摘要内容,如果看过这个剧,通过这个摘要可以大致了解到这是在讲汉东省委关于干部任用的会议的那一集。

4.相似文章分析

通过“Doc2Vec”组件可以将文本文章映射成高维向量化,将文本按照语义变成数学向量,结果如下:

然后可以通过”语义向量距离”组件挖掘出不同文章向量的距离,这里面的隐含关系是文章向量距离越近,那么语义越相近。我们以第9章为例:

第9章与第8章的向量距离最小,言外之意就是这两章的语义相近,这一点也比较容易理解,因为相连的两章在意义上肯定上是有一定的关联性。

四、总结

本文通过对“人民的名义”部分章节文本的分析,帮助大家了解机器学习PAI上面的部分文本算法的用法。如果向更深入的了解相关的内容,欢迎到PAI的社区来讨论,我们会定时组织活动。

社区:PAI社区公众号

产品页:阿里云数加机器学习平台

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
6月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
9月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
8月前
|
数据采集 人工智能 API
生物医药蛋白分子数据采集:支撑大模型训练的技术实践分享
作为生物信息学领域的数据工程师,近期在为蛋白质相互作用预测AI大模型构建训练集时,我面临着从PDB、UniProt等学术数据库获取高质量三维结构、序列及功能注释数据的核心挑战。通过综合运用反爬对抗技术,成功突破了数据库的速率限制、验证码验证等反爬机制,将数据采集效率提升4倍,为蛋白质-配体结合预测模型训练提供了包含10万+条有效数据的基础数据集,提高了该模型预测的准确性。
275 1
|
8月前
|
机器学习/深度学习 人工智能 边缘计算
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
|
9月前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
425 3
|
11月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
231 12
|
11月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
627 4
|
10月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。