【机器学习PAI实践五】机器学习眼中的《人民的名义》

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 一、背景最近热播的反腐神剧“人民的名义”掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用。笔者在平日追剧之余,也尝试通过机器学习算法对人民的名义的部分剧集文本内容进行了文本分析,希望从数据的角度得到一些输入。本文使用阿里云机器学习PAI,主要针对以下几个方面进行了实验: 分词以及词频统计每

一、背景


最近热播的反腐神剧“人民的名义”掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用。笔者在平日追剧之余,也尝试通过机器学习算法对人民的名义的部分剧集文本内容进行了文本分析,希望从数据的角度得到一些输入。

本文使用阿里云机器学习PAI,主要针对以下几个方面进行了实验:

  • 分词以及词频统计
  • 每一章的关键词提取
  • 每一章的文本摘要
  • 每一章文本之间的相似度分析

实验流程以及数据可以在阿里云机器学习PAI的社区直接使用,只要点击“去PAI平台创建”按钮即可在自己的项目下生成实验。社区部分截图:

二、数据集介绍

数据源:本文数据为人民的名义部分剧集文本,一共分成1-9个章节。
具体字段如下:

字段名 含义 类型 描述
id 文章唯一标识 string 文章标识
content 文章内容 string 部分剧集内容

数据截图:

三、数据探索流程

首先,实验流程图:

1.分词以及停用词

分词是文本分析的基础,但是在“人民的名义”这样的文本中会有很多特有名词,是分词算法很难区分的。比如“侯亮平”、“沙瑞金”、“大风厂”等,所以我们需要在split word组件中加入一个词库,帮助分词组件可以对人名做正确的分词处理。加入的词库fufeitest.splite_w如下图:

另外,文本中一些“的”、“地”、“得”这样的助词以及各种标点符号也需要去掉,这些词是没有意义的,对文本分析有干扰,这些词可以通过“停用词过滤”组件去除。最终通过分词以及停用词过滤组件操作之后,文本内容被整理成了如下图形态:

2.关键词提取及词频统计

通过“词频统计”组件可以查看每一章中各个词语出现的频率,如图所示,id为1的文章中每个词语出现的次数:

“关键词”提取组件可以返回每个文章中关键的词语以及权重,(如果我们在停用词过滤那里处理的更细致,这部分效果会更好),通过这个结果可以看到每一章的关键人物有哪些,以及他们的权重排名:

3.文本摘要

“文本摘要”组件可以帮助您快速的浏览每一章节的关键内容,返回的是全文最关键的句子,我这里设置的是返回前三关键的句子:

截取的是第9章的摘要内容,如果看过这个剧,通过这个摘要可以大致了解到这是在讲汉东省委关于干部任用的会议的那一集。

4.相似文章分析

通过“Doc2Vec”组件可以将文本文章映射成高维向量化,将文本按照语义变成数学向量,结果如下:

然后可以通过”语义向量距离”组件挖掘出不同文章向量的距离,这里面的隐含关系是文章向量距离越近,那么语义越相近。我们以第9章为例:

第9章与第8章的向量距离最小,言外之意就是这两章的语义相近,这一点也比较容易理解,因为相连的两章在意义上肯定上是有一定的关联性。

四、总结

本文通过对“人民的名义”部分章节文本的分析,帮助大家了解机器学习PAI上面的部分文本算法的用法。如果向更深入的了解相关的内容,欢迎到PAI的社区来讨论,我们会定时组织活动。

社区:PAI社区公众号

产品页:阿里云数加机器学习平台

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
24天前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
16天前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
28 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
21天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
21天前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
46 1
|
26天前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践
本文将带你进入机器学习的世界,从基本概念出发,深入探讨其背后的数学原理,再通过Python代码示例,展示如何实际应用这些理论。无论你是初学者还是有经验的开发者,都能从中获益。
|
26天前
|
机器学习/深度学习 数据可视化 算法
机器学习中的回归分析:理论与实践
机器学习中的回归分析:理论与实践
|
2月前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践
【9月更文挑战第24天】本文将带你走进机器学习的世界,了解其基本概念,探索其背后的数学原理,并通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是初学者还是有经验的开发者,都能在这篇文章中找到新的视角和深入的理解。
41 9
|
1月前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践的旅程
【8月更文挑战第62天】本文通过深入浅出的方式,带领读者走进机器学习的世界。首先介绍了机器学习的基本概念,然后通过一个简单的Python代码示例,展示了如何实现一个基本的线性回归模型。最后,探讨了机器学习在现实生活中的应用,以及未来的发展趋势。本文旨在帮助初学者理解机器学习的基本理念,并激发他们进一步探索这一领域的兴趣。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
108 8
|
18天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第8天】在这篇文章中,我们将一起踏上一段旅程,探索机器学习的奥秘。我们首先会了解机器学习的基本概念,然后深入其理论基础,最后通过代码示例,将理论应用于实践。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
34 0

热门文章

最新文章