机器学习PAI常见问题之部署报错如何解决

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。

问题一:机器学习PAI alink不支持flink 1.13以上的版本吗?


机器学习PAI alink不支持flink 1.13以上的版本吗?可以自己编译源码来支持吗


参考回答:

是的。Alink支持的Flink版本为1.13。Alink提供了pyalink包,这个包对应于Alink所支持的最新Flink版本,也就是1.13。请注意,不同版本的Alink可能对应不同版本的Flink,因此,如果正在使用特定版本的Alink,需要确保它支持正在使用的Flink版本。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/598425


问题二:机器学习PAI在maxcompute调用PAI训练,不用pai-tf/deeprec的办法有吗?


机器学习PAI在maxcompute调用PAI训练,不用pai-tf/deeprec的办法有吗?

需要怎么操作?


参考回答:

https://easyrec.readthedocs.io/en/latest/quick_start/mc_tutorial.html 不是这种吗


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/599122


问题三:机器学习PAI部署这个: 但是部署时报错了,帮忙看看?


机器学习PAI部署这个: http://easyrec.oss-cn-beijing.aliyuncs.com/processor/LaRec-1.0.2a-v3-TF-2.10.1-Linux.tar.gz Process的包是这个看文档gpu推荐:T4、A10、3090或4090等GPU型号,但是部署时报错了,服务名:fs_adx_new_model_v3地域: 华北2


参考回答:

用的机器太老了,需要用g7系列的,g7系列以上的也可以


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/599123


问题四:机器学习PAI这种embedding特征的加入模型,写样本的时候json文件是怎么写吗?


机器学习PAI这种embedding特征的加入模型,写样本的时候json文件是怎么写吗?我现在这种写法{"expression": "user:open_emb", "feature_name": "open_emb", "feature_type": "raw_feature", "value_type": "String", "group": "user"},features中就只有embedding中的第一个数字


参考回答:

fg.json 你写成IdFeature吧,EasyRec的config再写成 RawFeature


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/599125


问题五:机器学习PAI中EasyRec里面,这样做的设计初衷是啥?


机器学习PAI中EasyRec里面,feature_column是把tensorflow的代码抄过来了一份,而不是直接用tf的。这样做的设计初衷是啥?


参考回答:

为了兼容低版本的tf运行时环境


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/599126

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
26天前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
15天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
59 18
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
29天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
27天前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
26天前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
205 1
|
4月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
200 8

相关产品

  • 人工智能平台 PAI