阿里云人工智能平台 PAI 扩散模型加速采样算法论文入选 CIKM 2023

简介: 近日CIKM 2023上,阿里云人工智能平台PAI和华东师范大学陈岑副教授团队主导的扩散模型加速采样算法论文《Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models》入选。此次入选意味着阿里云人工智能平台 PAI自研的扩散模型算法和框架达到了全球业界先进水平,获得了国际学者的认可,展现了中国人工智能技术创新在国际上的竞争力。

1. 背景

近日CIKM 2023上,阿里云人工智能平台PAI和华东师范大学陈岑副教授团队主导的扩散模型加速采样算法论文《Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models》入选。论文提出了OLSS (Optimal Linear Subspace Search) 算法,这是一种针对扩散模型的采样加速算法。论文通过对扩散模型加速算法的本质被建模成线性子空间的扩张过程,给出了目前方法的统一分析,并基于此设计了新的加速算法,大幅度提升了扩散模型的生成速度。


CIKM是人工智能领域的顶级国际会议,会议的目的是确定未来知识和信息系统发展面临的挑战性问题,并通过征集和审查高质量的应用和理论研究成果来塑造未来的研究方向,在学术和工业界都有巨大的影响力。此次入选意味着阿里云人工智能平台 PAI自研的扩散模型算法和框架达到了全球业界先进水平,获得了国际学者的认可,展现了中国人工智能技术创新在国际上的竞争力。


2. 主要内容

扩散模型在图像生成领域的成功我们有目共睹。从 Latent Diffusion 到 Stable Diffusion,从惊艳的 Midjourney 到百花齐放的 Diffusion 开源社区,扩散模型目前已然成为 AIGC 行业的最热门研究方向之一。


image.png

图 1:扩散模型的精美生成效果


然而,扩散模型生成精美图像的代价是高昂的计算资源需求。与基于生成对抗网络的方法不同,扩散模型的生成过程是迭代式的,因此需要多次调用模型,逐步消除图像中的噪声。现有的一些加速算法通过设计“调度机”,构造完整生成过程的近似过程,减少迭代步数,提高生成速度。

image.png

图 2:调度机算法构造的短步数近似过程


根据论文中的分析,调度机构造的近似过程本质上是线性子空间的扩张过程,论文中也给出了其中的几何解释,DDIM 算法在二维线性子空间中寻找近似解,而论文中提出的 OLSS 算法旨在更高维的线性子空间中求解。

image.png

图 3:OLSS 算法的直观几何解释


此外,OLSS 还使用一个路径规划算法进一步提升精度,在同等步数下,实现了更高的图像质量。

image.png

图 4:OLSS 算法与其他方法生成的图像对比


目前,阿里云人工智能平台 PAI已经上线了多种扩散模型的应用,例如快速部署AIGC Stable Diffusion SDWebUI绘画的AI-Web应用及快速推理等。用户可以登录阿里云官网领取免费试用资源,快速体验。


3. 论文信息

论文标题:Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models
论文作者:段忠杰、汪诚愚、陈岑、黄俊、钱卫宁
论文pdf文档

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
289 2
|
4月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
107 8
|
4月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
4月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
4月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
288 0
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
369 0
|
3月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
243 2
|
4月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
253 3
|
4月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
189 6
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
199 8

相关产品

  • 人工智能平台 PAI