通过阿里云Milvus与PAI搭建高效的检索增强对话系统

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。


背景介绍

阿里云向量检索 Milvus 版(简称阿里云Milvus)是一款云上全托管服务,确保了与开源Milvus的100%兼容性,并支持无缝迁移。在开源版本的基础上增强了可扩展性,能提供大规模 AI 向量数据的相似性检索服务。相比于自建,阿里云Milvus具备易用性、可用性、安全性、低成本与生态优势。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,阿里云Milvus 云服务成为多样化 AI 应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的 Attu 工具进行可视化操作,进一步促进应用的快速开发和部署。

阿里云Milvus现已无缝集成于阿里云人工智能PAI平台,一站式赋能用户构建高性能的RAG(Retrieval-Augmented Generation)对话系统。您可以利用Milvus作为向量数据的实时存储与检索核心,高效结合PAI和LangChain技术栈,实现从理论到实践的快速转化,搭建起功能强大的RAG解决方案。


前提条件

  • 已创建Milvus实例,并配置了公网访问。

进入阿里云Milvus页面(https://www.aliyun.com/product/milvus),登录阿里云Milvus控制台(https://milvus.console.aliyun.com/#/overview并在左侧导航栏,单击Milvus实例,并继续创建实例

在目标实例的安全配置页面,单击开启公网。输入当前服务器的公网访问IP地址或符合CIDR定义的IP地址段。

  • 已开通PAI(EAS)并创建了默认工作空间。

登录PAI控制台https://pai.console.aliyun.com),在左上角选择需要开通的地域后,进行认证、授权并开通服务,待开通成功后,便可进入控制台进行AI开发。

使用限制

  • Milvus实例和PAI(EAS)须在相同地域下。


操作流程

步骤一:通过PAI部署RAG系统

  1. 进入模型在线服务页面。
  1. 登录PAI控制台(https://pai.console.aliyun.com/)。
  2. 在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。
  3. 在工作空间页面的左侧导航栏选择模型部署>模型在线服务(EAS),进入模型在线服务(EAS)页面。


  1. 模型在线服务页面,单击部署服务
  2. 部署服务页面,选择大模型RAG对话系统部署
  3. 部署大模型RAG对话系统页面,配置以下关键参数,其余参数可使用默认配置,更多参数详情请参见大模型RAG对话系统https://help.aliyun.com/zh/pai/user-guide/deploy-a-rag-based-dialogue-system)。


参数

描述

基本信息

服务名称

您可以自定义。

模型来源

使用默认的开源公共模型

模型类别

本示例以Qwen1.5-1.8b为例。

资源配置

实例数

使用默认的1。

资源配置选择

按需选择GPU资源配置。例如,ml.gu7i.c16m30.1-gu30。

向量检索库设置

版本类型

选择Milvus

访问地址

Milvus实例的内网地址。您可以在Milvus实例的实例详情页面查看。

代理端口

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。

账号

配置为root。

密码

配置为创建Milvus实例时,您自定义的root用户的密码。

数据库名称

配置为数据库名称,例如default。创建Milvus实例时,系统会默认创建数据库default,您也可以手动创建新的数据库,具体操作,请参见管理Databases(https://help.aliyun.com/zh/milvus/user-guide/manage-databases)。

Collection名称

输入新的Collection名称或已存在的Collection名称。对于已存在的Collection,Collection结构应符合PAI-RAG要求,例如您可以填写之前通过EAS部署RAG服务时自动创建的Collection。

专有网络配置

VPC

创建Milvus实例选择时的VPC、交换机和安全组。您可以在Milvus实例的实例详情页面查看。

交换机

安全组名称


  1. 单击部署

服务状态变为运行中时,表示服务部署成功。


步骤二:通过RAG WebUI上传知识库

  1. 配置RAG对话系统。
  1. 模型在线服务(EAS)页面,单击查看Web应用,进入WebUI页面。
  2. 配置Embedding模型。

     在RAG服务WebUI界面的Settings选项卡中,系统已自动识别并应用了部署服务时配置的向量检索库设置。

  • Embedding Model Name:系统内置四种模型供您选择,将自动为您配置最合适的模型。
  • Embedding Dimension:选择Embedding Model Name后,系统会自动进行配置,无需手动操作。



c. 测试向量检索库连接是否正常。

系统已自动识别并应用了部署服务时配置的向量检索库设置,并且该设置不支持修改。您可以单击Connect      Milvus,来验证Milvus连接是否正常。

  1. 上传知识库。 在RAG服务WebUI界面的Upload选项卡中,可以上传知识库文档。
  1. 设置语义切块参数。

通过配置以下参数来控制文档切块粒度的大小和进行QA信息提取:

参数

描述

Chunk Size

指定每个分块的大小,单位为字节,默认为500。

Chunk Overlap

表示相邻分块之间的重叠量,默认为10。

Process with QA Extraction Model

通过选中Yes复选框启动QA信息提取功能,系统将在您上传业务数据文件后自动抽取出QA对,以获得更好的检索和回答效果。


b. 在Files页签下上传业务数据文件(支持多文件上传)。

本文以唐诗三百首的poems.txthttps://help-static-aliyun-doc.aliyuncs.com)文档作为示例数据,您可以直接使用。

c. 单击Upload,系统会先对上传的文件进行数据清洗(文本提取、超链接替换等)和语义切块,然后进行上传。


步骤三:通过RAG WebUI对话

在RAG服务WebUI界面的Chat选项卡中,提供了多种不同的Prompt策略,您可以选择合适的预定义Prompt模板或输入自定义的Prompt模板以获得更好的推理效果。

  1. 配置LLM问答策略
  1. 在RAG服务WebUI界面的Chat选项卡中,选择LLM。
  2. 直接与LLM对话,返回大模型的回答。

  1. 配置Retrieval问答策略

  1. 配置RAG(Retrieval + LLM)问答策略

选择RAG (Retrieval + LLM),然后进行向量检索等一系列实验。


步骤四:查看知识库切块

Attu是一款专为Milvus向量数据库打造的开源数据库管理工具,提供了便捷的图形化界面,极大地简化了对Milvus数据库的操作与管理流程。下面,我们将使用Milvus的Attu工具,查看向量数据库的存储内容。

  1. 进入安全配置页面。
  1. 登录阿里云Milvus控制台https://milvus.console.aliyun.com/)。
  2. 在左侧导航栏,单击Milvus实例
  3. 在顶部菜单栏处,根据实际情况选择地域。
  4. Milvus实例页面,单击目标实例名称。
  5. 单击安全配置页签。
  1. 配置公网访问。
  1. 安全配置页签,单击开启公网

b. 输入当前服务器的公网访问IP地址或符合CIDR定义的IP地址段。

多个IP条目以半角逗号(,)隔开,不可重复。您可以通过访问https://www.cip.cc/获取当前服务器的公网访问IP地址。

c. 单击确定

  1. 访问Attu页面。

a. 单击页面上方的Attu manager

b. 在弹出的对话框中输入所要访问的数据库、用户名和密码,单击连接,即可打开Attu管理页面。

实例创建完成后,系统会自动创建一个名为default的默认数据库,并为您创建一个名为root的用户,该用户的密码由您在创建实例时自行设置。

  1. 在Attu页面,您可以看到RAG服务自动创建的Collection。


相关信息

  • 预付费包年折扣:1年85折、2年7折、3年5折;
  • 产品动态:

如有疑问,可加入向量检索 Milvus 版用户交流钉群 59530004993咨询。

目录
打赏
0
6
6
0
111
分享
相关文章
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
基于QwQ-32B+Hologres+PAI搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于QwQ大模型的RAG服务,并关联Hologres引擎实例。Hologres与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。通过PAI-EAS,用户可以一键部署集成大语言模型(LLM)和检索增强生成(RAG)技术的对话系统服务,显著缩短部署时间并提升问答质量。具体步骤包括准备Hologres向量检索库、部署RAG服务、通过WebUI页面进行模型推理验证及API调用验证。Hologres支持高性能向量计算,适用于复杂任务的动态决策,帮助克服大模型在领域知识局限、信息更新滞后和误导性输出等方面的挑战。
Hologres × PAI × DeepSeek 搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于DeepSeek大模型的RAG(检索增强生成)服务,并关联Hologres引擎实例。Hologres与阿里云自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时的向量计算能力。通过PAI-EAS,用户可以一键部署集成了大语言模型和RAG技术的对话系统服务,显著缩短部署时间,并提高问答质量。部署步骤包括准备Hologres向量检索库、部署基于DeepSeek的RAG服务、通过WebUI进行模型推理验证,以及通过API调用进行模型推理验证。Hologres还提供了特色功能支持,如高性能向量计算等。
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
310 6
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
76 6
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
627 13
机器学习算法的优化与改进:提升模型性能的策略与方法

热门文章

最新文章