通过阿里云Milvus和通义千问快速构建基于专属知识库的问答系统

本文涉及的产品
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文展示了如何使用阿里云向量检索 Milvus 版和灵积(Dashscope)提供的通用千问大模型能力,快速构建一个基于专属知识库的问答系统。在示例中,我们通过接入灵积的通义千问 API 及文本嵌入(Embedding)API 来实现 LLM 大模型的相关功能。

本文展示了如何使用阿里云向量检索Milvus和灵积(Dashscope)提供的通用千问大模型能力,快速构建一个基于专属知识库的问答系统。在示例中,我们通过接入灵积的通义千问API及文本嵌入(Embedding)API来实现LLM大模型的相关功能。


前提条件


使用限制

请确保您的运行环境中已安装 Python 3.8或以上版本,以便顺利安装并使用 DashScope。


操作流程

准备工作

  1. 安装相关的依赖库。
pip3 install pymilvus tqdm dashscope


  1. 下载所需的知识库。
    本文示例使用了公开数据集 CEC-Corpus。CEC-Corpus 数据集包含332篇针对各类突发事件的新闻报道,语料和标注数据,这里我们只需要提取原始的新闻稿文本,并将其向量化后入库。
git clone https://github.com/shijiebei2009/CEC-Corpus.git


步骤一:知识库向量化

  1. 创建 embedding.py 文件,内容如下所示。
import os
import time
from tqdm import tqdm
import dashscope
from dashscope import TextEmbedding
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility


def prepareData(path, batch_size=25):
    batch_docs = []
    for file in os.listdir(path):
        with open(path + '/' + file, 'r', encoding='utf-8') as f:
            batch_docs.append(f.read())
            if len(batch_docs) == batch_size:
                yield batch_docs
                batch_docs = []
                
    if batch_docs:
        yield batch_docs
        
        
def getEmbedding(news):
    model = TextEmbedding.call(
        model=TextEmbedding.Models.text_embedding_v1,
        input=news
    )
    embeddings = [record['embedding'] for record in model.output['embeddings']]
    return embeddings if isinstance(news, list) else embeddings[0]


if __name__ == '__main__':
    
    current_path = os.path.abspath(os.path.dirname(__file__))   # 当前目录
    root_path = os.path.abspath(os.path.join(current_path, '..'))   # 上级目录
    data_path = f'{root_path}/CEC-Corpus/raw corpus/allSourceText'  # 数据下载git clone https://github.com/shijiebei2009/CEC-Corpus.git
    
    # 配置Dashscope API KEY
    dashscope.api_key = '<YOUR_DASHSCOPE_API_KEY>'
    
    # 配置Milvus参数
    COLLECTION_NAME = 'CEC_Corpus'
    DIMENSION = 1536
    MILVUS_HOST = 'c-97a7d8038fb8****.milvus.aliyuncs.com'
    MILVUS_PORT = '19530'
    USER = 'root'
    PASSWORD = '<password>'
    
    connections.connect(host=MILVUS_HOST, port=MILVUS_PORT, user=USER, password=PASSWORD)
    
    # Remove collection if it already exists
    if utility.has_collection(COLLECTION_NAME):
        utility.drop_collection(COLLECTION_NAME)
    
    # Create collection which includes the id, title, and embedding.
    fields = [
        FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
        FieldSchema(name='text', dtype=DataType.VARCHAR, description='Text', max_length=4096),
        FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
    ]
    schema = CollectionSchema(fields=fields, description='CEC Corpus Collection')
    collection = Collection(name=COLLECTION_NAME, schema=schema)
    
    # Create an index for the collection.
    index_params = {
        'index_type': 'IVF_FLAT',
        'metric_type': 'L2',
        'params': {'nlist': 1024}
    }
    collection.create_index(field_name="embedding", index_params=index_params)
    
    id = 0
    for news in tqdm(list(prepareData(data_path))):
        ids = [id + i for i, _ in enumerate(news)]
        id += len(news)
        
        vectors = getEmbedding(news)
        # insert Milvus Collection
        for id, vector, doc in zip(ids, vectors, news):
            insert_doc = (doc[:498] + '..') if len(doc) > 500 else doc
            ins = [[id], [insert_doc], [vector]]  # Insert the title id, the text, and the text embedding vector
            collection.insert(ins)
            time.sleep(2)


本文示例涉及以下参数,请您根据实际环境替换。

参数

说明

data_path

存放CEC-Corpus数据的路径。

COLLECTION_NAME

设置Miluvs Collection名称,您可以自定义。

dashscope_api_key

模型服务灵积的密钥。您可以在模型服务灵积控制台的API-KEY管理页面查看。

DIMENSION

向量维度。固定值为1536。

MILVUS_HOST

Milvus实例的公网地址。您可以在Milvus实例的实例详情页面查看。

MILVUS_PORT

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。默认为19530。

USER

配置为创建Milvus实例时,您自定义的用户。

PASSWORD

配置为创建Milvus实例时,您自定义用户的密码。


  1. 在Attu中您可以看到已经创建的Collection,具体操作请参见Attu工具管理


在本文示例中,我们将Embedding向量和新闻报道文稿一起存入Milvus中,同时构建索引类型采用了IVF_FLAT,在向量检索时,同时可以召回原始文稿。


步骤二:向量检索与知识问答

数据写入完成后,即可进行快速的向量检索。在通过提问搜索到相关的知识点后,我们可以按照特定的模板将“提问 + 知识点”作为prompt向LLM发起提问。在这里我们所使用的LLM是通义千问,这是阿里巴巴自主研发的超大规模语言模型,能够在用户自然语言输入的基础上,通过自然语言理解和语义分析,理解用户意图。通过提供尽可能清晰详细的指令(prompt),可以获得更符合预期的结果。这些能力都可以通过通义千问来获得。


本文示例设计的提问模板格式为:请基于我提供的内容回答问题。内容是{___},我的问题是{___},当然您也可以自行设计合适的模板。


创建answer.py文件,内容如下所示。

import os
import dashscope
from dashscope import Generation
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
from embedding import getEmbedding


def getAnswer(query, context):
    prompt = f'''请基于```内的报道内容,回答我的问题。
          ```
          {context}
          ```
          我的问题是:{query}
       '''
    
    rsp = Generation.call(model='qwen-turbo', prompt=prompt)
    return rsp.output.text


def search(text):
    # Search parameters for the index
    search_params = {
        "metric_type": "L2"
    }
    
    results = collection.search(
        data=[getEmbedding(text)],  # Embeded search value
        anns_field="embedding",  # Search across embeddings
        param=search_params,
        limit=1,  # Limit to five results per search
        output_fields=['text']  # Include title field in result
    )
    
    ret = []
    for hit in results[0]:
        ret.append(hit.entity.get('text'))
    return ret


if __name__ == '__main__':
    
    current_path = os.path.abspath(os.path.dirname(__file__))   # 当前目录
    root_path = os.path.abspath(os.path.join(current_path, '..'))   # 上级目录
    data_path = f'{root_path}/CEC-Corpus/raw corpus/allSourceText'
    
    # 配置Dashscope API KEY
    dashscope.api_key = '<YOUR_DASHSCOPE_API_KEY>'
    
    # 配置Milvus参数
    COLLECTION_NAME = 'CEC_Corpus'
    DIMENSION = 1536
    MILVUS_HOST = 'c-97a7d8038fb8****.milvus.aliyuncs.com'
    MILVUS_PORT = '19530'
    USER = 'root'
    PASSWORD = '<password>'
    
    connections.connect(host=MILVUS_HOST, port=MILVUS_PORT, user=USER, password=PASSWORD)
    
    fields = [
        FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
        FieldSchema(name='text', dtype=DataType.VARCHAR, description='Text', max_length=4096),
        FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
    ]
    schema = CollectionSchema(fields=fields, description='CEC Corpus Collection')
    collection = Collection(name=COLLECTION_NAME, schema=schema)
    
    # Load the collection into memory for searching
    collection.load()
    
    question = '北京中央电视台工地发生大火,发生在哪里?出动了多少辆消防车?人员伤亡情况如何?'
    context = search(question)
    answer = getAnswer(question, context)
    print(answer)


运行完成后,针对北京中央电视台工地发生大火,发生在哪里?出动了多少辆消防车?人员伤亡情况如何?的提问,会得到以下结果。


火灾发生在北京市朝阳区东三环中央电视台新址园区在建的附属文化中心大楼工地。出动了54辆消防车。目前尚无人员伤亡报告。


快速跳转

  1. 向量检索 Milvus 版官网:https://www.aliyun.com/product/milvus
  2. 产品控制台:https://milvus.console.aliyun.com/#/overview
  3. 产品文档:https://help.aliyun.com/zh/milvus/
  4. 标准版申请:https://survey.aliyun.com/apps/zhiliao/JqRjGNFoS



向量检索 Milvus 版用户交流钉钉群

1712734996586.png

相关文章
|
22天前
|
存储 人工智能 监控
通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
21天前
|
人工智能 自然语言处理 知识图谱
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
Yuxi-Know是一个结合大模型RAG知识库与知识图谱技术的智能问答平台,支持多格式文档处理和复杂知识关系查询,具备多模型适配和智能体拓展能力。
137 0
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
|
26天前
|
存储 人工智能 自然语言处理
RAG 实战|用 StarRocks + DeepSeek 构建智能问答与企业知识库
本文由镜舟科技解决方案架构师石强与StarRocks TSC Member赵恒联合撰写,围绕RAG(检索增强生成)技术展开,结合DeepSeek和StarRocks构建智能问答系统。RAG通过外部知识检索与AI生成相结合,解决大模型知识静态、易编造信息的问题。文章详细介绍了系统组成、操作流程及优化方法,包括DeepSeek部署、StarRocks向量索引配置、知识存储与提取等环节,并通过代码示例演示了从文本向量化到生成回答的完整过程。最后,加入RAG机制后,系统性能显著提升,支持企业级知识库与智能客服场景。文中还提供了Web可视化界面实现方案,助力开发者快速上手。
|
17天前
|
云安全 人工智能 自然语言处理
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云 AI 搜索开放平台新功能发布:大模型联网能力上线
阿里云 AI 搜索开放平台此次新增了大模型联网能力,通过集成大语言模型(LLM)和联网搜索技术,为用户提供更智能、更全面的搜索体验。
372 25
|
9天前
|
存储 人工智能 安全
Infortress远程访问本地大模型和知识库之深度体验
Infortress是一款革新性的AI工具,解决本地AI部署缺乏远程访问能力的痛点。通过简单配置,用户可轻松搭建本地大模型和知识库,并通过PC客户端与手机APP实现远程访问。其内网穿透技术确保稳定高效的数据交互,所有计算在本地完成,保障数据安全。此外,Infortress还支持家庭数据中心搭建,具备AI分类、异地双活等功能。
|
27天前
|
人工智能 搜索推荐 Java
【重磅】JeecgBoot 里程碑 v3.8.0 发布,支持 AI 大模型、应用、AI 流程编排和知识库
JeecgBoot 最新推出了一整套 AI 大模型功能,包括 AI 模型管理、AI 应用、知识库、AI 流程编排和 AI 对话助手。这标志着其转型为 “AI 低代码平台”,旨在帮助开发者快速构建和部署个性化 AI 应用,降低开发门槛,提升效率。
71 12
|
1月前
|
人工智能 数据可视化 关系型数据库
23.5K star!零代码构建AI知识库,这个开源神器让问答系统开发像搭积木一样简单!
FastGPT 是一个基于大语言模型的智能知识库平台,提供开箱即用的数据处理、RAG检索和可视化AI工作流编排能力,让你无需编写代码就能轻松构建复杂的问答系统!
|
1月前
|
人工智能 安全 搜索推荐
阿里云AI Stack,加速大模型创新应用
阿里云AI Stack作为面向企业级客户的轻量化、极致性价比、软硬一体AI解决方案,顺利通过了中国信通院《AI大模型一体机技术能力要求》测评。
318 1
|
2月前
|
SQL 存储 关系型数据库
【YashanDB知识库】共享从 MySQL异常处理CONTINUE HANDLER的改写方法
【YashanDB知识库】共享从 MySQL异常处理CONTINUE HANDLER的改写方法

热门文章

最新文章