【赵渝强老师】大数据生态圈中的组件

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本文介绍了大数据体系架构中的主要组件,包括Hadoop、Spark和Flink生态圈中的数据存储、计算和分析组件。数据存储组件包括HDFS、HBase、Hive和Kafka;计算组件包括MapReduce、Spark Core、Flink DataSet、Spark Streaming和Flink DataStream;分析组件包括Hive、Spark SQL和Flink SQL。文中还提供了相关组件的详细介绍和视频讲解。

b113.png

大数据体系架构中的组件非常多,每个组件又属于不同的生态圈系统。从最早的Hadoop生态圈体系开始,逐步有了Spark生态圈体系和Flink生态圈体系。因此在学习大数据之前有必要了解一下每一个生态圈体系中具体包含哪些组件,以及它们的作用又是什么。

   

视频讲解如下:


一、大数据的数据存储组件


在大数据体系中使用了分布式存储的方式解决了海量数据的存储问题。它分为离线数据存储和实时数据存储。


(一)大数据离线数据存储组件

   

大数据离线数据存储组件主要包括:HDFS、HBase和Hive。这三个组件都属于Hadoop生态圈体系。下面分别进行介绍。


  • HDFS

   

它的全称是Hadoop Distributed File System,它是Hadoop分布式文件系统,用于解决大数据的存储问题。HDFS源自于Google的GFS论文,可用于运行在低成本的通用硬件上,是一个具有容错的文件系统。


  • HBase

   

基于HDFS之上的分布式列式存储NoSQL数据库,起源于Google的BigTable思想。由于HBase的底层是HDFS,因此HBase中创建的表和表中数据最终都是存储在HDFS上。HBase的核心是列式存储,它适合执行查询操作。


  • Hive

   

Hive是基于HDFS之上的数据仓库,支持标准的SQL语句。默认情况下,Hive的执行引擎是MapReduce。Hive可以把一条标准的SQL转换成是MapReduce任务运行在Yarn之上。


提示:Hive的执行引擎也可以是Spark,即:Hive on Spark。


(二)大数据实时数据存储组件

   

大数据实时数据存储组件主要使用消息系统Kafka。


  • Kafka

 

Kafka是由Apache软件基金会开发的一个开源流处理平台,它是一种高吞吐量的分布式发布订阅消息系统。Kafka的诞生是为了解决LinkedIn的数据管道问题。起初LinkedIn采用ActiveMQ进行数据交换。在2010年前后,Active MQ远远无法满足LinkedIn对数据传递系统的要求,经常由于各种缺陷导致消息阻塞或服务无法正常访问。为了解决这个问题,LinkedIn决定研发自己的消息传递系统。当时LinkedIn的首席架构师Jay Kreps组织团队进行消息传递系统的研发,进而有了现在的Kafka消息系统。


二、大数据的数据计算组件

   

大数据生态圈提供了各种计算引擎。通过使用这些计算引擎来执行批处理的离线计算和流处理的实时计算;同时也提供了各种数据分析引擎,用于支持SQL语句


(一)大数据批处理的离线计算组件

   

大数据批处理的离线计算组件主要包括:MapReduce、Spark Core和Flink DataSet。下面分别进行介绍。


  • MapReduce

   

MapReduce是一种分布式计算模型,用以进行大数据量的计算,它是一种离线计算处理模型。MapReduce通过Map和Reduce两个阶段的划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。通过MapReduce既可以处理HDFS中的数据,也可以处理HBase中的数据。

提示:在Hadoop的安装包中已经集成了HDFS与Yarn。因此Hadoop安装成功后,可以直接执行MapReduce任务处理HDFS的数据。


  • Spark Core

   

Spark Core是Spark的核心部分,也是Spark执行引擎。在Spark中执行的所有计算都是由Spark Core完成,它是一个种离线计算引擎。Spark Core提供了SparkContext访问接口用于提交执行Spark任务。通过该访问接口既可以开发Java程序,也可以开发Scala程序来分析和处理数据。SparkContext也是Spark中最重要的一个对象。

提示:Spark中的所有计算都是Spark Core离线计算,因此Spark生态圈体系中不存在真正的实时计算。


  • Flink DataSet

   

Flink DataSet API是Flink中用于处理有边界数据流的功能模块,其本质就是执行批处理的离线计算,这一点与Hadoop中的MapReduce和Spark中的Spark Core其实是一样的。下表1列出了Flink DataSet API中的一些常见的算子。



(二)大数据流处理的实时计算组件

   

大数据流处理的实时计算组件主要包括:Spark Streaming和Flink DataStream。下面分别进行介绍。


  • Spark Streaming

   

Spark Streaming是核心Spark API的扩展,它可实现可扩展、高吞吐量、可容错的实时数据流处理。但是Spark Streaming底层的执行引擎依然是Spark Core,这就决定了Spark Streaming并不是真正的流处理引擎,它是通过时间的采样间隔把流式数据编程小批量数据进行处理,其本质任然是批处理的离线计算。Spark Streaming访问接口是StreamingContext。


  • Flink DataStream

   

Flink DataStream API可以从多种数据源创建DataStreamSource,如:消息队列Kafka、文件流和Socket连接等等;然后,通过Transformation的转换操作进行流式数据的处理;最后由Sink组件将处理的结果进行输出。


(三)大数据数据分析组件

   

为了支持使用SQL处理大数据便有了各种大数据分析引擎,主要包括:Hive、Spark SQL、Flink SQL等下面分别进行介绍。


  • Hive

   

Hive是基于HDFS之上的数据仓库,支持标准的SQL语句。默认情况下,Hive的执行引擎是MapReduce。Hive可以把一条标准的SQL转换成是MapReduce任务运行在Yarn之上。


提示:Hive的执行引擎也可以是Spark,即:Hive on Spark。


  • Spark SQL

 

Spark SQL是Spark用来处理结构化数据的一个模块,它的核心数据模型是DataFrame,其访问接口是SQLContext。这里可以把DataFrame理解成是一张表。当DataFrame创建成功后,Spark SQL可支持DSL语句和SQL语句来分析处理数据。由于Spark SQL底层的执行引擎是Spark Core,因此Spark SQL执行的本质也是执行的一个Spark Core任务。


  • Flink Table & FlinkSQL

   

与Hadoop的Hive和Spark SQL类似,在Flink的生态圈体系中也提供了两个关系型操作的API:Table API 和SQL。Flink Table API 是用于Scala 和Java 语言的查询API,允许以非常直观的方式组合关系运算符的查询,如 select、filter 和 join;Flink SQL API支持的是实现了标准SQL的Apache Calcite。通过这套接口,能够使用SQL语句处理DataSet数据流和DataStream数据流。




相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6月前
|
JavaScript 大数据 Python
原生大数据|elasticSearch|低版本kibana组件的汉化
原生大数据|elasticSearch|低版本kibana组件的汉化
58 0
|
6月前
|
存储 分布式计算 负载均衡
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
218 0
|
1月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
82 0
|
7天前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
【赵渝强老师】基于大数据组件的平台架构
|
1月前
|
SQL 存储 分布式计算
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
25 9
|
1月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
64 1
|
2月前
|
存储 分布式计算 资源调度
两万字长文向你解密大数据组件 Hadoop
两万字长文向你解密大数据组件 Hadoop
123 11
|
3月前
|
前端开发 大数据 数据库
🔥大数据洪流下的决战:JSF 表格组件如何做到毫秒级响应?揭秘背后的性能魔法!💪
【8月更文挑战第31天】在 Web 应用中,表格组件常用于展示和操作数据,但在大数据量下性能会成瓶颈。本文介绍在 JavaServer Faces(JSF)中优化表格组件的方法,包括数据处理、分页及懒加载等技术。通过后端分页或懒加载按需加载数据,减少不必要的数据加载和优化数据库查询,并利用缓存机制减少数据库访问次数,从而提高表格组件的响应速度和整体性能。掌握这些最佳实践对开发高性能 JSF 应用至关重要。
68 0
|
5月前
|
存储 分布式计算 大数据
Hadoop 生态圈中的组件如何协同工作来实现大数据处理的全流程
Hadoop 生态圈中的组件如何协同工作来实现大数据处理的全流程
|
6月前
|
SQL 分布式计算 资源调度
常用大数据组件的Web端口号总结
这是关于常用大数据组件Web端口号的总结。通过虚拟机名+端口号可访问各组件服务:Hadoop HDFS的9870,YARN的ResourceManager的8088和JobHistoryServer的19888,Zeppelin的8000,HBase的10610,Hive的10002。ZooKeeper的端口包括客户端连接的2181,服务器间通信的2888以及选举通信的3888。
195 2
常用大数据组件的Web端口号总结

相关产品

  • 云原生大数据计算服务 MaxCompute