【强化学习】基于深度强化学习的微能源网能量管理与优化策略研究【Python】

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本项目基于深度Q网络(DQN)算法,通过学习预测负荷、可再生能源输出及分时电价等信息,实现微能源网的能量管理与优化。程序以能量总线模型为基础,结合强化学习理论,采用Python编写,注释清晰,复现效果佳。内容涵盖微能源网系统组成、Q学习算法原理及其实现,并提供训练奖励曲线、发电单元功率、电网交互功率和蓄电池调度等运行结果图表,便于对照文献学习与应用。

主要内容  

该程序借助深度 Q 网络(DQN),学习预测负荷、风 / 光可再生能源功率输出及分时电价等环境信息,运用所学策略集对微能源网能量进行管理,该方法属于模型无关的价值型智能算法。

程序以能量总线模型为基础,搭建微能源网研究框架和设备模型。借助于强化学习框架、Q 学习及 DQN 算法的基础理论,分析经验回放与冻结参数机制对 DQN 性能的提升作用,最终以经济性为导向,实现微能源网的能量管理与优化。程序采用python代码编写,注释清楚,复现效果好!

为了方便大家更好的对照文献学习,整理了一版程序代码复现和文献的具体对应关系图。


 程序要点  

2.1 微能源网系统组成


该系统为微型综合能源系统,能将多类能源以能量转换和储存等方式与不同类型负荷进行关联。

2.2 强化学习及Q学习算法

强化学习是指从环境状态到动作策略集的学习,以使得动作从环境中获得的累计奖励最大,学习的过程,如下图所示。本质上,智能体与环境的互动是一种马尔科夫决策过程(markov decision process,MDP)。MDP 一般由一个四元组(S, A, R, pi)定义。


Q 学习(Q-learning)是一种不基于环境模型、基于价值的强化学习算法。Q 学习的主要思路是定义状态动作价值函数,即 Q 函数,将观测数据代入到以下更新公式中对 Q 函数进行迭代学习。

深度 Q 网络创新性地把 Q 函数通过价值函数近似方法进行转换。具体而言,这种方法利用深度神经网络强大的函数拟合能力,将 Q 函数映射为一个深度神经网络。该神经网络以状态作为输入,经过多层神经元的计算和特征提取,输出对应每个动作的 Q 值估计。经过转换,深度神经网络能够以一种紧凑且高效的方式表示 Q 函数,使得智能体可以在大规模的状态和动作空间中快速学习和决策,极大地拓展了强化学习在复杂现实场景中的应用范围。


 部分代码  


plt.figure()    plt.plot(reward_history, color='#2ca02c', lw=1.5)    plt.title('训练奖励曲线')    plt.xlabel('训练周期')    plt.ylabel('平均奖励')    plt.grid(True, alpha=0.3)    # 2. 发电单元功率    plt.figure()    plt.plot(operation_data['MT'], color='#ff7f0e', marker='o', markersize=4)    plt.title('联供机组出力')    plt.xlabel('时间 (h)')    plt.ylabel('功率 (kW)')    plt.xticks(range(0, 24, 4))    plt.grid(True, alpha=0.3)    # 3. 电网交互功率    plt.figure()    plt.bar(range(23), operation_data['Grid'], color='#1f77b4')    plt.title('电网购电功率')    plt.xlabel('时间 (h)')    plt.ylabel('功率 (kW)')    plt.xticks(range(0, 24, 4))    plt.grid(True, alpha=0.3)    # 4. 蓄电池调度    plt.figure()    batt_power = np.array(operation_data['Batt'])    charge = np.where(batt_power < 0, -batt_power, 0)    discharge = np.where(batt_power > 0, batt_power, 0)    plt.bar(range(23), charge, color='#9467bd', label='充电')    plt.bar(range(23), -discharge, color='#d62728', label='放电')    plt.title('蓄电池调度')    plt.xlabel('时间 (h)')    plt.ylabel('功率 (kW)')    plt.xticks(range(0, 24, 4))    plt.legend()    plt.grid(True, alpha=0.3)

运行结果  



相关文章
|
3月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
3天前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
17 1
|
29天前
|
监控 大数据 API
Python 技术员实践指南:从项目落地到技术优化
本内容涵盖Python开发的实战项目、技术攻关与工程化实践,包括自动化脚本(日志分析系统)和Web后端(轻量化API服务)两大项目类型。通过使用正则表达式、Flask框架等技术,解决日志分析效率低与API服务性能优化等问题。同时深入探讨内存泄漏排查、CPU瓶颈优化,并提供团队协作规范与代码审查流程。延伸至AI、大数据及DevOps领域,如商品推荐系统、PySpark数据处理和Airflow任务编排,助力开发者全面提升从编码到架构的能力,积累高并发与大数据场景下的实战经验。
Python 技术员实践指南:从项目落地到技术优化
|
11天前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
32 4
|
9天前
|
数据采集 机器学习/深度学习 边缘计算
Python爬虫动态IP代理报错全解析:从问题定位到实战优化
本文详解爬虫代理设置常见报错场景及解决方案,涵盖IP失效、403封禁、性能瓶颈等问题,提供动态IP代理的12种核心处理方案及完整代码实现,助力提升爬虫系统稳定性。
41 0
|
2月前
|
数据可视化 数据挖掘 数据安全/隐私保护
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
102 4
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
|
2月前
|
网络协议 API 开发者
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
87 19
|
1月前
|
网络协议 API Python
解析http.client与requests在Python中的性能比较和改进策略。
最后,需要明确的是,这两种库各有其优点和适用场景。`http.client` 更适合于基础且并行的请求,`requests` 则因其易用且强大的功能,更适用于复杂的 HTTP 场景。对于哪种更适合你的应用,可能需要你自己进行实际的测试来确定。
75 10
|
1月前
|
测试技术 Python
Python测试报告生成:整合错误截图,重复用例执行策略,调整测试顺序及多断言机制。
如何组织这一切呢?你可以写一本名为“Python测试之道”的动作指南手册,或者创建一个包含测试策略、测试顺序、多断言机制的脚本库。只要你的测试剧本编写得足够独到,你的框架就会像一位执行任务的超级英雄,将任何潜伏于代码深处的错误无情地揪出来展现在光天化日之下。这些整理好的测试结果,不仅有利于团队协作,更像冒险故事中的精彩篇章,带给读者无尽的探索乐趣和深刻的思考。
63 10

推荐镜像

更多