计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-12(上)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-12(上)

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-12

1. PharmaBench: Enhancing ADMET benchmarks with large language models

Z Niu, X Xiao, W Wu, Q Cai, Y Jiang, W Jin, M Wang… - Scientific Data, 2024

大语言模型在药物发现中的应用:PharmaBench

文章由MindRank AI、伦敦帝国理工学院、华中科技大学和其他机构的研究人员共同撰写。

背景与总结

  • ADMET(吸收、分布、代谢、排泄和毒性)特性的优化在药物发现中起着关键作用。
  • 计算方法的发展为药物发现提供了快速且成本效益高的手段,减少了实验工作量和时间。
  • 现有的基准数据集存在局限性,如覆盖的生物测定数据有限,与工业药物发现流程中的实体差异较大。

方法

  • 利用大型语言模型(LLMs)作为核心引擎,从生物医学数据库中的测定描述中提取实验条件。
  • 建立了自动化数据处理框架,用于处理数据,以便编制ADMET基准数据集。
  • 实施了从ChEMBL数据库处理生物测定数据并提取缺失的实验条件的流程。
  • 通过多步骤验证过程确认数据质量、分子特性和PharmaBench的建模能力。

数据处理工作流程

  • 数据收集:主要来源是ChEMBL数据库,包括实验值、化学结构、测定描述等。
  • 数据挖掘:使用GPT-4模型作为数据挖掘任务的核心,通过少量示例学习来提取实验条件。
  • 数据标准化:包括结构格式、实验条件和实验值的标准化。
  • 数据过滤:移除异常分子和不规则实验结果,构建最终基准集。
  • AI建模数据准备:统一重复结果,划分训练和测试集。

技术验证

  • 通过重复测试、属性分布分析和深度学习及机器学习建模来评估数据集。
  • 展示了PharmaBench数据集在不同模型上的表现,证明了数据集的质量。

实验相关

  • 提供了11个ADMET数据集,包括标准化的SMILES表示、实验值和训练标签。
  • 用户可以使用提供的标签进行公平比较。

代码可用性

  • 研究中使用的代码已存储在GitHub上,所有计算均在Python 3.12.2虚拟环境下完成。

参考文献

文章列出了57个参考文献,涵盖了药物发现、大语言模型、数据挖掘和机器学习等领域的研究。

2. Consumer segmentation with large language models

Y Li, Y Liu, M Yu - Journal of Retailing and Consumer Services, 2025

大语言模型在消费者细分中的应用

摘要

  • 消费者细分对企业定制产品至关重要。 本研究探索了大型语言模型(LLMs)在市场研究消费者细分中的应用。
  • 通过LLMs进行基于消费者调查数据的聚类分析,重点关注基于文本的多项选择题和开放式问题。
  • 使用LLMs模型进行文本嵌入聚类,提高了聚类准确性。 创建了模拟消费者偏好的聊天机器人,准确率超过89%。 研究结果强调了LLMs框架在市场研究中的潜力。

引言

  • 零售文献中包含多种揭示消费者偏好的方法,其中调查问卷起着关键作用。
  • 传统的调查方法忽视了问卷中的文本数据,导致研究者和实践者难以理解消费者偏好。
  • LLMs在理解和生成自然语言方面具有强大的能力,已被应用于市场感知分析、搜索引擎优化和个性化营销等领域。

消费者细分

  • “用户画像”概念涉及从用户的基本、社会、行为和心理属性中提取共同特征。
  • 企业通过收集和分析消费者的社会特征、生活习惯和购买行为数据来细分消费者群体。

嵌入模型

  • 在自然语言处理(NLP)中,嵌入是将文本数据转换为数值向量的过程。
  • 嵌入向量能够表示词、短语或整个文档在连续向量空间中的语义相似性。

数据来源

  • 与一家经营1000多家连锁店和5000多家高质量零售店的中国酒类公司合作,获得了500份有效回应。
  • 调查问卷旨在探索消费者对酒类的偏好,并构建详细的消费者画像。

聚类结果

  • 使用K-means聚类算法构建消费者画像。K-means算法易于实现和理解,计算效率高,适用于中等规模数据集。

关键结论

  • 研究调查了LLM技术在协助公司进行消费者细分和构建消费者画像方面的应用。
  • LLM方法是一个可靠且高效的工具,能够有效地对调查文本进行聚类,并基于真实消费者体验促进扩展问答环节。

3. Tele-LLMs: A Series of Specialized Large Language Models for Telecommunications

A Maatouk, KC Ampudia, R Ying, L Tassiulas - arXiv preprint arXiv:2409.05314, 2024

Tele-LLMs: 为电信领域定制的大型语言模型系列

摘要

  • 大型语言模型(LLMs)在自然语言处理和多个领域产生了显著影响。
  • 电信领域的LLMs应用受限,通常依赖于缺乏特定领域专业化的通用模型。
  • 本文通过创建和发布Tele-Data(电信材料综合数据集)和Tele-Eval(针对该领域的大规模问答数据集),解决了这一问题。
  • 通过广泛实验,探索了将LLMs适应于电信领域最有效的训练技术。
  • 开发了和开源了Tele-LLMs系列,这是首批为电信领域量身定制的、参数从1B到8B不等的语言模型。
  • 评估表明,这些模型在Tele-Eval上的表现超过了通用模型,同时保留了先前获得的能力,避免了灾难性遗忘现象。

算法模型

  • Tele-Data 策划
  • 利用基于LLM的过滤方法,从arXiv论文、标准、Wikipedia文章和网络内容中筛选相关来源。
  • 通过正则表达式和针对电信领域特性的LLM过滤技术进行广泛清洗。
  • Tele-Eval 生成
  • 利用Tele-Data,通过LLM框架创建了包含750k问答对的评估数据集。
  • 应用严格的正则表达式和LLM过滤,排除局部兴趣问题。

实验探索

  • 研究了使用参数高效微调(PEFT)技术向模型注入电信知识的可能性。
  • 通过实验确定了最大化模型性能所需的训练周期数,并识别了在此适应过程中的过拟合点。

Tele-LLMs 系列

  • 基于Tinyllama-1.1B、Phi-1.5、Gemma-2B和LLama-3-8B,开发了从1B到8B参数的Tele-LLMs系列。
  • 通过定量和定性评估,与原始版本进行比较,突出了在电信领域的优势。

实验效果

  • Tele-LLMs在Tele-Eval上的平均相对改进达到了25%。
  • 在灾难性遗忘现象方面,这些模型成功保留了原始能力。
  • 在电信领域,即使是较小的适配模型也能与较大的通用模型相媲美。

核心结论

  • 本文成功地为电信领域定制了一系列大型语言模型。
  • 通过创建和开源整个专业化框架的每一步,为电信领域提供了强大的工具。
  • Tele-LLMs系列不仅在电信领域表现出色,还为未来在该领域的LLM应用奠定了基础。

4. MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct

R Luo, H Zhang, L Chen, TE Lin, X Liu, Y Wu, M Yang… - arXiv preprint arXiv …, 2024

摘要

  • 本文提出了MMEvol,一个新颖的多模态指令数据进化框架,用于提升多模态大型语言模型(MLLMs)的能力。
  • 通过结合细粒度感知进化、认知推理进化和交互进化,MMEvol迭代方法突破了数据质量瓶颈,生成了复杂且多样化的图像-文本指令数据集。
  • 利用SEED-163K初始指令集,通过MMEvol系统地扩展指令类型的多样性,整合推理步骤以增强认知能力,并从图像中提取详细信息以提升视觉理解和鲁棒性。
  • 在13个视觉-语言任务上进行实验,与基线训练相比,平均准确率提高了3.1个百分点,并在9个任务上达到了最先进的性能。

算法模型

数据收集

  • 从多个来源策划了163K的种子指令数据集,包括LLaVA-Instruct、ShareGPT4V数据集和额外的科学图表数据。

方法细节

  • 细粒度感知进化:最大化图像中视觉信息的提取,特别是那些被忽视的非主要视觉对象。
  • 认知推理进化:通过增加数据中的视觉推理步骤来生成新的指令数据,从而提高数据复杂性。
  • 交互进化:自动生成具有丰富任务形式的指令数据,以提供良好的交互体验。
  • 指令消除:通过评分标准过滤掉进化失败的指令数据,保留成功的指令。

实验效果

  • 在多个视觉-语言基准测试中,使用进化数据训练的模型表现出色,与使用原始种子数据训练的模型相比,平均性能提升3.8个百分点。
  • 在与现有最先进方法的比较中,使用MMEvol数据训练的模型在几乎所有基准测试中都显著提高了性能界限。
  • 通过定性分析和消融实验验证了所提出方法的有效性和效率。

核心结论

  • MMEvol通过迭代增强指令数据的多样性和复杂性,有效提升了MLLMs的性能。
  • 未来的研究方向包括探索集成图像生成模型以合成新图像,并进行图像和文本的双重进化,以训练更强大的基础模型。

5. The emergence of Large Language Models (LLM) as a tool in literature reviews: an LLM automated systematic review

D Scherbakov, N Hubig, V Jansari, A Bakumenko… - arXiv preprint arXiv …, 2024

摘要

  • 本研究旨在总结大型语言模型(LLM)在创建科学综述过程中的使用情况。
  • 研究目的是评估LLM在自动化综述过程中的各个阶段的应用,并评估当前该领域的最新研究项目。
  • 研究通过使用一系列LLM工具,对使用LLM进行系统和其他类型综述的研究项目进行了系统综述。


计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-13(下)+https://developer.aliyun.com/article/1628806

目录
打赏
0
0
0
0
16
分享
相关文章
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
87 4
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
357 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
548 62
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
209 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
583 2
调研180多篇论文,这篇综述终于把大模型做算法设计理清了
《A Systematic Survey on Large Language Models for Algorithm Design》综述了过去三年大型语言模型(LLMs)在算法设计中的应用。LLMs通过自然语言处理技术,助力生成、优化和验证算法,在优化、机器学习、数学推理等领域展现出广泛应用前景。尽管存在资源需求高、结果不确定等挑战,LLMs仍为算法设计带来新机遇。论文地址:https://arxiv.org/abs/2410.14716。
189 14
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等