这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎯 「还在手抄论文公式?这个AI把arXiv变成代码工厂,1小时复现顶会算法!」

大家好,我是蚝油菜花。你是否也经历过这些科研至暗时刻——

  • 👉 复现论文时发现作者没开源代码,反向工程做到怀疑人生
  • 👉 手动实现Transformer注意力机制,矩阵维度错一位debug三天
  • 👉 导师突然要对比十篇顶会方法,熬夜赶工到咖啡因中毒...

今天要解剖的 Paper2Code ,正在用多智能体LLM重写科研工作流!这个韩国科研天团打造的「论文编译器」:

  • 三阶段精准拆解:从架构设计到代码生成全自动流水线
  • 代码质量碾压人类:在PaperBench测试集上超越基线模型
  • 工业级复现精度:连Attention Is All You Need都能1:1还原

已有团队用它1天复现5篇顶会论文,文末附《从PDF到GitHub仓库保姆指南》——你的科研效率,是时候开启「自动驾驶」模式了!

🚀 快速阅读

Paper2Code是基于多智能体LLM的论文转代码框架。

  1. 功能:通过规划、分析、生成三阶段实现论文到代码的自动转换
  2. 技术:采用专用Agent分工协作,确保代码结构清晰且符合论文原意

Paper2Code 是什么

paper2code

Paper2Code 是韩国科学技术院和DeepAuto.ai联合推出的多 Agent 大语言模型(LLM)框架,支持将机器学习领域的科学论文自动转换为可运行的代码仓库。

Paper2Code基于三个阶段实现这一目标,规划(构建系统架构、生成配置文件)、分析(解读实现细节)和代码生成(生成模块化代码)。Paper2Code 在多个基准测试中表现出色,生成的代码质量高,忠实于原始论文,显著加速科学研究的复现和进一步发展。

Paper2Code 的主要功能

  • 自动化代码生成:将机器学习论文自动转换为功能性的代码仓库
  • 高质量代码输出:生成的代码结构清晰,忠实于原始论文,支持快速复现和验证研究成果
  • 效率提升:自动化流程大幅减少手动实现代码的时间和精力,加速科学研究的迭代和创新

Paper2Code 的技术原理

  • 多Agent大语言模型(LLM):采用专用Agent处理不同阶段任务
  • 规划阶段(Planning):用自然语言处理技术提取关键信息,生成系统架构图和文件依赖关系
  • 分析阶段(Analysis):基于 LLM 的推理能力,生成详细的实现指南
  • 代码生成阶段(Coding):根据前两阶段输出生成模块化、依赖关系明确的代码
  • 评估与反馈:通过模型评估和人类专家验证确保代码质量

如何运行 Paper2Code

快速开始

运行示例论文《Attention Is All You Need》的转换:

pip install openai

export OPENAI_API_KEY="<OPENAI_API_KEY>"

cd scripts
bash run.sh

输出目录结构

outputs
├── Transformer
│   ├── analyzing_artifacts
│   ├── coding_artifacts
│   └── planning_artifacts
└── Transformer_repo  # 最终输出的代码仓库

详细设置

环境配置

安装OpenAI最新版:

pip install openai

PDF转JSON

1. 克隆s2orc-doc2json仓库:

git clone https://github.com/allenai/s2orc-doc2json.git

2. 运行PDF处理服务:

cd ./s2orc-doc2json/grobid-0.7.3
./gradlew run

3. 转换PDF为JSON格式:

mkdir -p ./s2orc-doc2json/output_dir/paper_coder
python ./s2orc-doc2json/doc2json/grobid2json/process_pdf.py \
    -i ${PDF_PATH} \
    -t ./s2orc-doc2json/temp_dir/ \ 
    -o ./s2orc-doc2json/output_dir/paper_coder

🚀 运行PaperCoder

设置API密钥后执行:

export OPENAI_API_KEY="<OPENAI_API_KEY>"
cd scripts
bash run.sh

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
15天前
|
人工智能 PyTorch TensorFlow
AI界的"翻译官":ONNX如何让各框架模型和谐共处
还在为不同框架间的模型转换头疼?ONNX让你在PyTorch训练的模型可以无缝在TensorFlow部署,甚至能让模型在手机上飞速运行。本文带你了解这个AI领域的'瑞士军刀',轻松实现跨平台高性能模型部署。
116 12
|
7天前
|
人工智能 Java 决策智能
Spring AI Alibaba Graph:多智能体框架实践
Spring AI Alibaba 是一个面向 Java 开发者的开源人工智能框架,旨在简化 AI 应用开发。本文重点介绍其 Graph 组件,用于解决工作流与多智能体协作问题。Graph 组件通过声明式编程接口,提供统一的上下文管理、消息记忆、人工确认节点等功能,支持复杂 AI 应用的构建。
|
1月前
|
机器学习/深度学习 人工智能 算法
破解生成式AI认知边界:框架思维引擎如何重塑产业智能化未来
该内容深入解析了核心技术架构,涵盖思维链强化系统(DTT)、认知框架建模体系和实时纠偏算法体系。DTT通过多级问题拆解、混合精度推理及分布式验证,大幅提升复杂问题处理能力;认知框架结合知识图谱与逻辑推理,实现精准医疗诊断等应用;实时纠偏算法则通过多级验证机制保障事实与逻辑准确性。整体架构分应用层、框架层和基础层,支持高效、可信的跨领域适配。技术创新体现在混合计算加速、持续学习机制等方面,显著优于传统模型,在事实准确性、逻辑连续性及响应速度上优势明显。
83 28
|
28天前
|
人工智能 开发框架 前端开发
斩获3K+ star,再见传统开发!这款开源AI后台开发框架让效率提升300%
ruoyi-ai 是基于 ruoyi-plus 框架开发的开源 AI 平台,集成 ChatGPT4、DALL·E-3 和 MidJourney 等前沿模型,提供聊天、绘画、语音克隆等全栈式 AI 能力。其核心价值在于多模态交互与企业级部署支持,开发者可快速搭建智能应用,个人用户亦能轻松体验 AI 创作魅力。项目支持自定义知识库训练、AI 绘画生成、语音克隆、弹幕互动等功能,采用 Java17+SpringBoot3.X 技术栈,前后端分离设计,具备高效性能与扩展性。相比同类项目,ruoyi-ai 提供更丰富的功能组合和企业级管理能力,适用于多种场景需求。
132 3
|
6月前
|
机器学习/深度学习 人工智能 算法
AI框架的赢者法则:生态繁荣的昇思MindSpore,成为大模型时代的新选择
2024年被视为大模型应用的元年。昇思MindSpore AI框架凭借其强大的开源社区和技术创新,在全球范围内迅速崛起。截至2024年11月,该框架的下载量已超过1100万次,覆盖130多个国家和地区的2400多个城市,拥有3.7万名贡献者。昇思MindSpore不仅在人才培养和社区治理方面表现出色,还在大模型的开发、训练和应用中发挥了关键作用,支持了50多个主流大模型,覆盖15个行业。随着其市场份额预计达到30%,昇思MindSpore正逐步成为行业共识,推动大模型在各领域的广泛应用。
174 12
|
机器学习/深度学习 人工智能 算法
国产AI框架支棱起来了!这所211高校凭昇思MindSpore连发10篇顶刊/顶会论文
国产AI框架支棱起来了!这所211高校凭昇思MindSpore连发10篇顶刊/顶会论文
306 0
|
人工智能 算法 开发者
华为开源全场景AI计算框架MindSpore,性能可达 Pytorch+2080Ti 的1.93倍
华为开源全场景AI计算框架MindSpore,性能可达 Pytorch+2080Ti 的1.93倍
625 0
|
机器学习/深度学习 人工智能 自然语言处理
进击的 AI 框架,MindSpore 开源一周年
开源一年以来,累计发布 8 个新版本,汇聚超过 3000 名社区开发者的代码贡献,社区访问量超千万;现拥有超过 100 个大的基础模型,涵盖计算机视觉、NLP 等主流的 AI 和深度学习框架;累计 PR 数 超过 2 万个,下载量高达 22 万次,下载用户遍布全球;超过 100 所高校参与了社区活动,超过 40 家科研机构利用它去发表原创论文。这就是全场景 AI 计算框架 MindSpore 开源一年来取得的成绩!
368 0
进击的 AI 框架,MindSpore 开源一周年
|
机器学习/深度学习 人工智能 算法
华为正式开源 AI 框架 MindSpore,已完成全栈全场景 AI 解决方案(Portfolio)的构建
华为正式开源 AI 框架 MindSpore,已完成全栈全场景 AI 解决方案(Portfolio)的构建
华为正式开源 AI 框架 MindSpore,已完成全栈全场景 AI 解决方案(Portfolio)的构建

热门文章

最新文章