基于prim算法求出网络最小生成树实现网络社团划分和规划

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 该程序使用MATLAB 2022a版实现路线规划,通过排序节点权值并运用Prim算法生成最小生成树完成网络规划。程序基于TSP问题,采用遗传算法与粒子群优化算法进行路径优化。遗传算法通过编码、选择、交叉及变异操作迭代寻优;粒子群优化算法则通过模拟鸟群觅食行为,更新粒子速度和位置以寻找最优解。

1.程序功能描述
路线制定

1,将算法得到的各社团的需充电节点数量排序,将其视为节点权值

2,利用prim算法求出最小生成树,即完成了整个网络规划。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

%节点权值
W   = [];
Xz  = [];
Yz  = [];
Ridx= 0;
for j=1:length(Cpn)
    if Cpn(j) == 0%N型社团
       Ridx    = Ridx + 1; 
       tmp     = C{j,1};
       E       = Eres(tmp);
       %找到能量最小的三个
       [VV,II] = sort(E);
       %求出其质心作为停留点
       indx    = tmp(II(1:min(3,length(tmp))));
       Xz      = [Xz,mean(Xo(indx))];
       Yz      = [Yz,mean(Yo(indx))];
       %分析无需充电节点
       Nindx1  = find(E>=0.9*Ec);
       %分析需充电节点
       Nindx2  = find(E< 0.9*Ec);
       %权值
       W       = [W,length(Nindx2)];
    end
end
%权值
W
%利用prim算法求出最小生成树,即完成了整个网络规划
figure;
for j = 1:length(Cj)
    tmp = Cj{j,1};
    X0  = Xo(tmp);
    Y0  = Yo(tmp);
    plot(X0,Y0,colors{j});
    hold on
    Xc(j)= mean(X0);
    Yc(j)= mean(Y0);
    for i = 1:length(tmp)
        dist(i) = sqrt((Xc(j)-X0(i))^2 + (Yc(j)-Y0(i))^2);
    end
    if Cpn(j) == 1
       plot3(Xc(j),Yc(j),max(dist)); 
    else
       plot4(Xc(j),Yc(j),max(dist)); 
    end
    hold on
end
plot(Xc,Yc,'rs','LineWidth',2,'MarkerEdgeColor','b','MarkerFaceColor','y','MarkerSize',10)
title('社团划分结果(Red:P;Black:N),Yellow:P&N中心点');
hold on
[All_Lens,T,xx,yy]=func_prim([Xc;Yc]);
grid on;

%按先序遍历顺序访问
for i=1:length(T)-1
    Xc(i) = xx(T(1,i));
    Yc(i) = yy(T(1,i));
end
%统计首次通过的
Xc1 = unique(Xc);
Yc1 = unique(Yc);
%路由表,保存点坐标
[Xc1',Yc1']
12_035m
AI 代码解读

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。TSP问题可以描述为:给定一个城市集合和每对城市之间的距离,要求找出访问每个城市一次并返回起点的最短路径。

4.1 遗传算法(Genetic Algorithm, GA)在TSP中的应用
遗传算法是一种模拟自然选择和遗传学机制的优化算法,适用于求解组合优化问题。在TSP问题中,GA通过编码生成初始路径种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

编码方式:采用自然数编码,每个城市的编号代表一个基因,一条路径则由一串基因组成。
初始种群生成:随机生成一定数量的初始路径,构成初始种群。
适应度函数:以适应度函数来衡量每个个体的优劣。在TSP问题中,适应度函数通常取为路径长度的倒数。
选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
变异操作:通过随机交换路径中两个城市的位置来实现变异。

4.2 粒子群优化算法在TSP中的应用
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,适用于连续和离散优化问题。在TSP问题中,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

  粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中城市的排列顺序决定。
   速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:(v_{id} = w * v_{id} + c1 * rand() * (pbest_{id} - x_{id}) + c2 * rand() * (gbest_d - x_{id})),其中 (v_{id}) 表示第i个粒子在第d维上的速度,(x_{id}) 表示第i个粒子在第d维上的位置,(pbest_{id}) 表示第i个粒子在第d维上的历史最优位置,(gbest_d) 表示群体在第d维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
AI 代码解读

位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:(x{id} = x{id} + v_{id})。

   需要注意的是,在更新位置时要保证新生成的路径满足TSP问题的约束条件。
AI 代码解读
目录
打赏
0
0
0
0
211
分享
相关文章
|
23天前
|
基于 PHP 语言深度优先搜索算法的局域网网络监控软件研究
在当下数字化时代,局域网作为企业与机构内部信息交互的核心载体,其稳定性与安全性备受关注。局域网网络监控软件随之兴起,成为保障网络正常运转的关键工具。此类软件的高效运行依托于多种数据结构与算法,本文将聚焦深度优先搜索(DFS)算法,探究其在局域网网络监控软件中的应用,并借助 PHP 语言代码示例予以详细阐释。
34 1
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
281 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
103 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等