打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!

简介: 【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。

Agent智能体项目实战

随着人工智能的发展,Agent智能体成为了研究与开发的热点。Agent通常指的是能够感知环境并通过采取行动来影响该环境的实体。在本篇技术博客中,我们将探讨如何构建一个基于强化学习的简单Agent智能体,并通过控制环境中的智能体来完成特定任务。本文将详细介绍整个项目的设计思路、实现过程以及一些关键代码片段。

为了使示例更具通用性和可操作性,我们假设的任务是在一个简单的迷宫环境中找到出口。迷宫由网格组成,每个网格可以是空的、墙壁或者是目标点(出口)。Agent智能体需要学会如何通过探索来找到从起点到达终点的最佳路径。

首先,我们需要定义环境。这里我们使用Python语言和一些基础库来实现。为了简化起见,我们假设环境是一个二维数组,其中包含墙壁(用字符'#'表示)和空格(用字符'.'表示),目标点用字符'O'表示:

maze = [
    ['#', '#', '#', '#', '#', '#', '#'],
    ['#', '.', '.', '.', '.', '.', '#'],
    ['#', '.', '#', '#', '#', '.', '#'],
    ['#', '.', '.', '.', '.', '.', '#'],
    ['#', '#', '#', '#', '#', '#', '#'],
]

接下来,定义Agent的行为,包括感知环境状态和基于当前状态采取动作的能力。我们使用OpenAI Gym框架来模拟环境和Agent之间的交互。如果尚未安装gym,请先安装它:

pip install gym

创建一个自定义环境类继承自gym.Env

import numpy as np
import gym
from gym import spaces

class MazeEnv(gym.Env):
    def __init__(self, maze):
        super(MazeEnv, self).__init__()
        self.maze = np.array(maze)
        self.action_space = spaces.Discrete(4)  # up, down, left, right
        self.observation_space = spaces.Box(low=0, high=len(maze), shape=(2,), dtype=np.int32)
        self.reset()

    def reset(self):
        self.agent_pos = np.array([1, 1])  # 假设初始位置为 (1, 1)
        return self.agent_pos

    def step(self, action):
        if action == 0:  # up
            self.agent_pos[0] -= 1
        elif action == 1:  # down
            self.agent_pos[0] += 1
        elif action == 2:  # left
            self.agent_pos[1] -= 1
        elif action == 3:  # right
            self.agent_pos[1] += 1

        # Check if the move is valid
        reward = -1
        done = False
        if self.maze[tuple(self.agent_pos)] == '#':
            self.agent_pos -= np.array([-1, -1, 1, 1])[action]
        elif self.maze[tuple(self.agent_pos)] == 'O':
            reward = 100
            done = True

        return self.agent_pos, reward, done, {
   }

    def render(self, mode='human'):
        maze_render = np.array(self.maze)
        maze_render[tuple(self.agent_pos)] = 'A'
        print('\n'.join([''.join(row) for row in maze_render]))

有了环境后,我们可以使用任何强化学习算法来训练我们的Agent。这里我们使用Q-learning算法,因为它简单且适合于这种类型的任务。

初始化Q-table,并定义学习函数:

def q_learning(env, episodes=1000, learning_rate=0.1, discount_rate=0.9, exploration_rate=1.0, max_exploration_rate=1.0, min_exploration_rate=0.01, exploration_decay_rate=0.01):
    q_table = np.zeros((env.observation_space.n, env.action_space.n))

    for episode in range(episodes):
        state = env.reset()
        done = False
        while not done:
            if np.random.rand() < exploration_rate:
                action = env.action_space.sample()  # Explore action space
            else:
                action = np.argmax(q_table[state])  # Exploit learned values

            new_state, reward, done, _ = env.step(action)
            old_value = q_table[state, action]
            next_max = np.max(q_table[new_state])

            new_value = (1 - learning_rate) * old_value + learning_rate * (reward + discount_rate * next_max)
            q_table[state, action] = new_value

            state = new_state

        exploration_rate = min_exploration_rate + \
                           (max_exploration_rate - min_exploration_rate) * np.exp(-exploration_decay_rate*episode)

    return q_table

现在,我们可以运行Q-learning算法来训练我们的Agent:

q_table = q_learning(MazeEnv(maze))

训练完成后,我们可以通过使用训练得到的Q-table来测试Agent的表现:

def test_agent(env, q_table):
    state = env.reset()
    done = False
    while not done:
        env.render()
        action = np.argmax(q_table[state])
        state, reward, done, _ = env.step(action)

test_agent(MazeEnv(maze), q_table)

至此,我们已经完成了一个简单的基于强化学习的Agent智能体项目。这个项目虽然简单,但它涵盖了构建一个智能体所需的基本要素:环境定义、Agent行为以及学习算法。通过类似的框架,可以进一步扩展到更复杂的应用场景中。希望这个示例能够帮助你理解Agent智能体的概念及其基本实现方法。

相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
754 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
4月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1278 6
|
4月前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
4月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
5631 81
|
4月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
1554 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
4月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
490 115
|
4月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
463 117
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
778 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1796 16
构建AI智能体:一、初识AI大模型与API调用

热门文章

最新文章