用Python构建动态折线图:实时展示爬取数据的指南

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍了如何利用Python的爬虫技术从“财富吧”获取中国股市的实时数据,并使用动态折线图展示股价变化。文章详细讲解了如何通过设置代理IP和请求头来绕过反爬机制,确保数据稳定获取。通过示例代码展示了如何使用`requests`和`matplotlib`库实现这一过程,最终生成每秒自动更新的动态股价图。这种方法不仅适用于股市分析,还可广泛应用于其他需要实时监控的数据源,帮助用户快速做出决策。

爬虫代理.png

背景/引言

随着大数据和人工智能的不断发展,实时数据分析变得越来越关键,尤其是在金融市场中。股市数据的实时可视化可以帮助投资者快速做出决策,避免错失良机。Python 凭借其强大的数据处理能力和丰富的可视化库,成为分析和展示实时数据的理想工具。

本文将演示如何通过爬虫技术从财富吧获取中国股市的实时数据,并使用动态折线图展示股价变化。我们还将展示如何使用代理IP和伪装请求等手段,以绕过反爬虫机制。

正文

1. 爬虫技术与反爬机制

爬虫技术广泛用于自动化获取网页数据。然而,为了避免过度爬取导致的服务器负担,很多网站都部署了反爬机制,例如IP限制、验证码验证等。使用代理IP、User-Agent伪装、Cookies等技术可以有效绕过一些反爬机制,从而持续稳定地获取数据。

在本项目中,我们将使用财富吧作为数据源,通过Python编写爬虫定时抓取股市实时数据,并使用matplotlib生成动态折线图。

2. 代理IP与请求头设置

为了稳定地获取股市数据,我们将使用代理IP服务,并通过设置合适的请求头来模拟真实的浏览器行为,避免被检测为爬虫。本文以爬虫代理为例。

代码示例

import requests
import json
import time
import matplotlib.pyplot as plt
from itertools import count
from matplotlib.animation import FuncAnimation

# 代理IP设置 (以亿牛云爬虫代理为例 www.16yun.cn)
proxy = {
   
    'http': 'http://username:password@proxy.16yun.cn:8100',
    'https': 'http://username:password@proxy.16yun.cn:8100'
}

# 请求头设置,包括User-Agent和Cookies
headers = {
   
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
    'Cookie': 'your_cookie_here'  # 需要替换为实际的Cookie
}

# 数据来源:财富吧
url = "https://www.caifub.com/api/stock"  # 替换为实际的财富吧API

# 初始化动态图的数据
x_vals = []
y_vals = []

# 生成数据索引
index = count()

# 爬取股市数据的函数
def get_stock_data():
    try:
        # 使用代理发送请求
        response = requests.get(url, headers=headers, proxies=proxy)
        # 检查响应状态码
        if response.status_code == 200:
            data = response.json()
            # 解析股市数据 (假设返回的是JSON格式)
            stock_price = data['price']  # 需要替换为实际字段
            return stock_price
        else:
            print(f"请求失败,状态码: {response.status_code}")
            return None
    except Exception as e:
        print(f"爬取数据时出错: {e}")
        return None

# 更新折线图的函数
def update_graph(i):
    stock_price = get_stock_data()
    if stock_price is not None:
        x_vals.append(next(index))
        y_vals.append(stock_price)

        plt.cla()
        plt.plot(x_vals, y_vals, label='实时股价')
        plt.xlabel('时间')
        plt.ylabel('价格')
        plt.title('中国股市实时数据')
        plt.legend()

# 使用Matplotlib的FuncAnimation实现动态图
ani = FuncAnimation(plt.gcf(), update_graph, interval=1000)

# 显示图形
plt.tight_layout()
plt.show()
AI 代码解读

3. 代码解读

  • 代理IP:代码中配置了代理IP,通过代理服务进行连接,避免爬虫的IP被限制。你需要将usernamepasswordproxy_domainproxy_port 替换为实际的代理信息。
  • 请求头设置:通过伪装的User-AgentCookies,模拟浏览器的真实访问行为,以避免触发财富吧的反爬虫策略。
  • 股市数据获取:该示例中,requests.get方法从财富吧公开API获取股市数据,并解析返回的JSON数据,提取股价信息。
  • 动态折线图绘制:使用matplotlibFuncAnimation函数实现实时更新的折线图,显示最新的股市价格。

4. 实时折线图的实现

  • FuncAnimation:通过FuncAnimation不断调用更新函数update_graph,使图表能够每秒刷新一次,动态显示股价。
  • count():使用itertools.count()生成递增的索引,作为时间轴的数据。
  • plt.cla():清空图表的当前绘制,防止数据重复显示,保持画面整洁。

实例

假设我们从财富吧API中抓取某只股票的实时价格,运行上述代码后,将显示股价变化的动态折线图。图形会每秒自动更新,展示最新的股市价格走势。通过这种方式,我们可以对市场进行实时监控,为投资决策提供支持。

结论

通过Python结合爬虫技术和动态折线图,我们可以轻松实现对实时股市数据的可视化展示。本文展示了如何从财富吧获取实时数据,并使用代理IP和伪装技术绕过反爬机制。这种方法不仅适用于股市分析,还可应用于其他需要实时监控的数据源。

实时数据可视化是一种有效的数据分析工具,特别是在金融领域,它能帮助用户快速掌握市场动态,从而更好地做出决策。

目录
打赏
0
0
0
0
199
分享
相关文章
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。
Python 高级编程与实战:构建分布式系统
本文深入探讨了 Python 中的分布式系统,介绍了 ZeroMQ、Celery 和 Dask 等工具的使用方法,并通过实战项目帮助读者掌握这些技术。ZeroMQ 是高性能异步消息库,支持多种通信模式;Celery 是分布式任务队列,支持异步任务执行;Dask 是并行计算库,适用于大规模数据处理。文章结合具体代码示例,帮助读者理解如何使用这些工具构建分布式系统。
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
Python爬取某云热歌榜:解析动态加载的歌曲数据
Python爬取某云热歌榜:解析动态加载的歌曲数据
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等