【技术实验】mysql准实时同步数据到Elasticsearch-阿里云开发者社区

开发者社区> 工程师甲> 正文

【技术实验】mysql准实时同步数据到Elasticsearch

简介: Elasticsearch作为大数据场景下搜索和分析的引擎,广泛应用于实时数据分析等场景。本文作者梳理了从MySQL准实时同步数据到Elasticsearch的实操步骤,帮助开发者理解和快速上手。
+关注继续查看

实验背景

Elasticsearch在阿里云商业化已经有一段时间,它作为大数据场景下搜索和分析的引擎,可以用于很多场景。前两天有同学提到需要将MySQL中的数据准实时的同步到ElasticSearch中的需求,由于自己对ES也很感兴趣但一直没有机会实操,恰好趁这个机会学习验证了一下,并把过程记录下来,方便新人尽快上手少走弯路。

本次实操采用Logstash实现将MySQL数据实时同步到ElasticSearch,过程中主要以实操步骤为主,并没有详细介绍这两个产品本身,所以文档适合对Logstash和Elasticsearch有一些基础的人阅读。使用Logstash过程中会用到一些参数,每个参数的详细解释请参考官方文档。

实验步骤

1. 开通阿里云Elasticsearch

开通阿里云Elasticsearch。产品链接

_

ES控制台中修改配置,允许自动创建索引。

_

2. 开通对应的ECS和RDS(MySQL)

开通与Elasticsearch相同Region、相同专有网络下的ECS一台,建议配置2核8G,操作系统:Aliyun Linux 17.1 64位,用于运行Logstash程序。

_

开通RDS(MySQL)

_

3. 在ECS上安装和配置curl

SSH登陆到ESC中,检查ECS是否已经安装curl。

curl是利用URL语法在命令行方式下工作的开源文件传输工具,可以用于测试访问ES服务。(Aliyun Linux 17.1 64位默认是预装curl的,若其他系统没有预装请自行安装)。
_

检查ECS中是否可以通过curl命令访问到ES服务。

curl -u ES用户名:ES密码 -XGET 'http://ES服务IP:9200/?pretty'
红色字体部分要替换相应的用户名、密码和ES服务IP或域名。如下图所以,能返回红框内的内容说明curl是可以访问到ES服务的。
_

4. 安装JDK8、MySQL5.6驱动以及Logstash -6.0.0

ECS中分别安装JDK8、MySQL5.6驱动以及Logstash -6.0.0。如下图:

_

安装Logstash input、output插件,此案例数据输入是MySQL,输出是ES,so相应的插件应该是logstash-input-jdbc和logstash-output-elasticsearch。

安装插件的命令分别是(在Logstash主目录下运行):
./bin/logstash-plugin install logstash-input-jdbc
./bin/logstash-plugin install logstash-output-elasticsearch
_

5. MySQL中创建数据库、测试的数据表

如下图所示

_
建表语句(其中updatetime用于记录数据更新时间戳):

create table jm_es_employee (         
id varchar(10),     
first_name varchar(20),     
last_name varchar(20),     
age int(10),     
about varchar(100),     
interests varchar(100),     
updatetime timestamp null default current_timestamp on update current_timestamp );

6. 配置Logstash作业文件

ECS中创建Logstash作业配置文件,文件名为logstash-mysql-es.conf。

配置文件内容:

input{
     jdbc {
         jdbc_driver_library => "mysql-connector-java-5.1.44-bin.jar"
         jdbc_driver_class => "com.mysql.jdbc.Driver"
         jdbc_connection_string => "jdbc:mysql://rm-***.mysql.rds.aliyuncs.com:3306/db_name"
         jdbc_user => "db_user"
         jdbc_password => "db_password"
         jdbc_paging_enabled => "true"
         jdbc_page_size => "1000"
         jdbc_default_timezone =>"Asia/Shanghai"
         schedule => "* * * * *"
         statement => "select * from jm_es_employee where updatetime > :sql_last_value"
         use_column_value => true
         tracking_column => "updatetime"
         last_run_metadata_path => "./logstash_jdbc_last_run"
       } 
} 
output{
      elasticsearch {
         hosts => "es-cn-***.elasticsearch.aliyuncs.com:9200"
         user => "elastic"
         password => "es_password"
         index => "employee"
         document_id => "%{id}"
      }
      stdout {
         codec => json_lines
     }
 } 

其中红色字体部分要做相应的替换,input中的 schedule参数用于配置数据刷新频率,schedule => " *"表示每分钟刷新一次,这也是MySQL数据同步的最小频率。Logstash支持丰富的参数配置,详情请参考Elasitc官网文档

7. 同步数据

ECS中指定参数启动Logstash服务,执行命令:

logstash -f logstash-mysql-es.conf

_

之后每分钟会去MySQL中刷新数据

_

RDS中写入几条测试数据,脚本如下:

INSERT INTO jm_es_employee(id,first_name,last_name,age,about,interests) VALUES('001','John','Smith', 25, 'I love to go rock climbing','[ "sports", "music" ]'); 
INSERT INTO jm_es_employee(id,first_name,last_name,age,about,interests) VALUES('002','Jane','Smith', 32, 'I like to collect rock albums','[ "music" ]'); 
INSERT INTO jm_es_employee(id,first_name,last_name,age,about,interests) VALUES('003','Douglas','Fir', 35, 'I like to build cabinets','[ "forestry" ]'); 

由于之前在Logstash配置文件中,output部分既配置了输出到ES,同时也输出到控制台。所以当检测到MySQL中有更新时,数据会输出到控制台中,如下图:

_

此时说明MySQL中的数据更新已经被Logstash推送到ES服务。通过在ECS执行命令检查ES服务中的索引是否被创建。执行命令:

curl -u elastic:es_password -XGET 'http://es-cn-***.elasticsearch.aliyuncs.com:9200/_cat/indices?v'

_

红框内的employee即我们在配置文件中指定的索引名,说明ES中的索引已经被成功创建。

8. 结果验证

通过关键字检索ES服务,验证写入Mysql的数据是否被成功索引到ES并被检索到,执行命令通过关键字“Smith “来检索数据:

curl -u elastic:es_password -XGET 'http://es-cn-***.elasticsearch.aliyuncs.com:9200/employee/_search?q=last_name:Smith&pretty' 

_

至此,MySQL中的数据已经被成功索引到Elasticsearch,并也可以被准实时的检索到。

作者:奇米 阿里巴巴高级工程师

加入钉钉技术讨论群

dingQR


阿里云Elasticsearch已正式发布啦,Elastic开源官方联合开发,集成5.5.3商业版本XPack功能,欢迎开通使用。
点击了解更多产品信息

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Elasticsearch系列---数据建模实战
<p style="font-weight: 400; margin: 10px 0px; padding: 0px; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); max-width: 100%; line-height: 1.5; color: rgb(51, 51, 51); font-family: &quot;Helvetica Neue&quot;, Helvetica, &quot;PingFang SC&quot;, Tahoma, Arial, sans-serif; white-space: normal; backgroun
83 0
干货 | 论Elasticsearch数据建模的重要性
1、什么是数据模型? 数据模型是抽象描述现实世界的一种工具和方法,是通过抽象的实体及实体之间联系的形式,用图形化的形式去描述业务规则的过程,从而表示现实世界中事务的相互关系的一种映射。
40 0
MySQL到Elasticsearch数据同步
MySQL数据同步Elasticsearch方案
3441 0
使用DTS从RDS PG实时同步数据到AnalyticDB for PostgreSQL
DTS支持从RDS PG将数据实时同步到AnalyticDB for PG,用户可以很方便的搭建起RDS PG到AnalyticDB for PG的数据同步,轻松实现数据的流转和复杂查询的优化。 使用DTS的前提条件 要求同步的数据表,必须建有主键(通过主键来保证源端和目标端表记录一致性)。
2239 0
【最佳实践】使用 Elasticsearch SQL 实现数据查询
如何使用 Elasticsearch SQL 来对我们的数据进行查询。
2375 0
使用 Kafka + Spark Streaming + Cassandra 构建数据实时处理引擎
Apache Kafka 是一个可扩展,高性能,低延迟的平台,允许我们像消息系统一样读取和写入数据。我们可以很容易地在 Java 中使用 Kafka。 Spark Streaming 是 Apache Spark 的一部分,是一个可扩展、高吞吐、容错的实时流处理引擎。
2829 0
Elasticsearch 跨集群数据迁移方案总结
Elasticsearch 跨集群数据迁移方案总结 -- elasticsearch-dump、reindex、snapshot、logstash
221 0
+关注
工程师甲
搜索与推荐工程技术团队、阿里云Elasticsearch技术团队;
203
文章
4
问答
来源圈子
更多
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载