Flink-08 Flink Java 3分钟上手 滑动窗口 SlidingWindow 时间驱动 事件驱动 TimeWindow CountWindow GlobalWindow

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink-08 Flink Java 3分钟上手 滑动窗口 SlidingWindow 时间驱动 事件驱动 TimeWindow CountWindow GlobalWindow

代码仓库

会同步代码到 GitHub

https://github.com/turbo-duck/flink-demo

上节进度

上节修改了数据源Socketkafka。此外,完成了 滚动窗口-事件驱动

核心代码

三个数据(key相同数据)触发一次事件

WindowedStream<Tuple2<String, Integer>, String, GlobalWindow> countWindow = keyedStream.countWindow(3);
        countWindow.apply(new MyCountWindowFunction()).print();

运行效果如下图

滑动窗口

什么是滑动窗口

Flink 的滑动窗口(Sliding Window)是一种在流处理应用中使用的窗口类型,用于对连续流数据进行分割和处理。

滑动窗口相对于滚动窗口(Tumbling Window)来说更灵活,因为它允许窗口在时间上重叠,从而可以更加精细地分析流数据。


滑动窗口按照固定的时间间隔(滑动步长)在数据流上滑动,并生成多个窗口。

这些窗口可以重叠,因此每条数据可能会被分配到多个窗口中。每个窗口都会独立地进行计算和聚合操作。


|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
  0    5    10   15   20   25   30   35   40   45   50   55   60  (时间轴)

窗口 1:从 0 分钟到 10 分钟
窗口 2:从 5 分钟到 15 分钟
窗口 3:从 10 分钟到 20 分钟
窗口 4:从 15 分钟到 25 分钟
窗口 5:从 20 分钟到 30 分钟
...

时间驱动

StartApp

package icu.wzk.demo07;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;

import java.text.SimpleDateFormat;
import java.util.Random;

/**
 * 滑动窗口 SlidingWindow
 * 窗口长度固定 可以有重叠
 * 基于时间驱动、基于事件驱动
 * @author wzk
 * @date 10:51 2024/6/22
**/
public class SlidingWindow {

    private static final Random RANDOM = new Random();

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        DataStreamSource<String> dataStreamSource = env.socketTextStream("0.0.0.0", 9999);
        SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
                long timeMillis = System.currentTimeMillis();
                int random = RANDOM.nextInt(10);
                System.err.println("value : " + value + " random : " + random + " timestamp : " + timeMillis + "|" + format.format(timeMillis));
                return new Tuple2<>(value, random);
            }
        });
        KeyedStream<Tuple2<String, Integer>, String> keyedStream = mapStream
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> value) throws Exception {
                        return value.f0;
                    }
                });

        // ==================== 时间驱动 ============================
        // 基于时间驱动,每隔5s计算一下最近10s的数据
        WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> timeWindow = keyedStream.timeWindow(Time.seconds(10), Time.seconds(5));
        timeWindow.sum(1).print();
        timeWindow.apply(new MyTimeWindowFunction()).print();
        env.execute();
    }

}

MyTimeWindowFunction

package icu.wzk.demo06;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;


/**
 * 基于时间驱动 TimeWindow
 * @author wzk
 * @date 10:26 2024/6/22
**/
public class MyTimeWindowFunction implements WindowFunction<Tuple2<String,Integer>, String, String, TimeWindow> {

    @Override
    public void apply(String s, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<String> out) throws Exception {
        SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");

        int sum = 0;

        for(Tuple2<String,Integer> tuple2 : input){
            sum +=tuple2.f1;
        }

        long start = window.getStart();
        long end = window.getEnd();

        out.collect("key:" + s + " value: " + sum + "| window_start :"
                + format.format(start) + "  window_end :" + format.format(end)
        );
    }
}

事件驱动

StartApp

package icu.wzk.demo07;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;

import java.text.SimpleDateFormat;
import java.util.Random;

/**
 * 滑动窗口 SlidingWindow
 * 窗口长度固定 可以有重叠
 * 基于时间驱动、基于事件驱动
 * @author wzk
 * @date 10:51 2024/6/22
**/
public class SlidingWindow {

    private static final Random RANDOM = new Random();

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        DataStreamSource<String> dataStreamSource = env.socketTextStream("0.0.0.0", 9999);
        SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
                long timeMillis = System.currentTimeMillis();
                int random = RANDOM.nextInt(10);
                System.err.println("value : " + value + " random : " + random + " timestamp : " + timeMillis + "|" + format.format(timeMillis));
                return new Tuple2<>(value, random);
            }
        });
        KeyedStream<Tuple2<String, Integer>, String> keyedStream = mapStream
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> value) throws Exception {
                        return value.f0;
                    }
                });
        // =================== 事件驱动 =============================
        //基于事件驱动,每隔2个事件,触发一次计算,本次窗口的大小为3,代表窗口里的每种事件最多为3个
        WindowedStream<Tuple2<String, Integer>, String, GlobalWindow> countWindow = keyedStream
                .countWindow(3, 2);
        countWindow.sum(1).print();
        countWindow.apply(new MyCountWindowFunction()).print();
        env.execute();
    }
}

MyCountWindowFunction

package icu.wzk.demo06;


import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;


/**
 * 基于事件驱动 GlobalWindow
 * @author wzk
 * @date 10:27 2024/6/22
**/
public class MyCountWindowFunction implements WindowFunction<Tuple2<String, Integer>, String, String, GlobalWindow> {

    @Override
    public void apply(String s, GlobalWindow window, Iterable<Tuple2<String, Integer>> input, Collector<String> out) throws Exception {
        SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
        int sum = 0;
        for (Tuple2<String, Integer> tuple2 : input){
            sum += tuple2.f1;
        }
        // 无用的时间戳,默认值为: Long.MAX_VALUE,因为基于事件计数的情况下,不关心时间。
        long maxTimestamp = window.maxTimestamp();
        out.collect("key:" + s + " value: " + sum + "| maxTimeStamp :"
                + maxTimestamp + "," + format.format(maxTimestamp)
        );
    }
}


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
1月前
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
利用java8 的 CompletableFuture 优化 Flink 程序
|
1月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
95 0
|
1月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
68 0
|
16天前
|
消息中间件 资源调度 Java
用Java实现samza转换成flink
【10月更文挑战第20天】
|
1月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
104 4
|
1月前
|
消息中间件 NoSQL Kafka
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
39 4
|
1月前
|
传感器 Java 物联网
Flink-09 Flink Java 3分钟上手 会话窗口 SessionWindow TimeWindow CountWindow GlobalWindow
Flink-09 Flink Java 3分钟上手 会话窗口 SessionWindow TimeWindow CountWindow GlobalWindow
28 4
|
1月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
33 0
|
1月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
73 0
|
11天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。