Flink-09 Flink Java 3分钟上手 会话窗口 SessionWindow TimeWindow CountWindow GlobalWindow

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink-09 Flink Java 3分钟上手 会话窗口 SessionWindow TimeWindow CountWindow GlobalWindow

代码仓库

会同步代码到 GitHub

https://github.com/turbo-duck/flink-demo

上节进度

上节完成了 SlideWindow 时间窗口中的 时间驱动事件驱动

核心代码

/ 时间驱动
 WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> timeWindow = keyedStream.timeWindow(Time.seconds(10), Time.seconds(5));
         timeWindow.sum(1).print();
         timeWindow.apply(new MyTimeWindowFunction()).print();
// 事件驱动
WindowedStream<Tuple2<String, Integer>, String, GlobalWindow> countWindow = keyedStream
                .countWindow(3, 2);
        countWindow.sum(1).print();
        countWindow.apply(new MyCountWindowFunction()).print();
        env.execute();

会话窗口

Flink 会话窗口(Session Window)是一种基于会话活动来划分窗口的机制。与固定时间窗口(Tumbling Window)和滑动窗口(Sliding Window)不同,会话窗口不依赖固定的时间间隔,而是根据数据的活跃度来动态地划分窗口。具体来说,当数据流中存在一定时间的间隔(即没有数据到达),会话窗口会根据这个间隔结束一个窗口,并在新的数据到来时开始一个新的窗口。


会话窗口场景

用户行为分析:如电商网站用户会话,分析用户的购物行为。

IoT 数据处理:物联网设备的活动周期,如传感器的间歇性数据上传。

网络流量分析:根据流量数据的间隔时间来分析网络活动会话。

时间驱动

package icu.wzk.demo07;


import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import icu.wzk.demo06.MyTimeWindowFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

import java.text.SimpleDateFormat;
import java.util.Random;


/**
 * 会话窗口
 * @author wzk
 * @date 14:10 2024/6/24
**/
public class SessionWindow {

    private static final Random RANDOM = new Random();

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        DataStreamSource<String> dataStreamSource = env.socketTextStream("0.0.0.0", 9999);
        SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
                long timeMillis = System.currentTimeMillis();
                int random = RANDOM.nextInt(10);
                System.err.println("value : " + value + " random : " + random + " timestamp : " + timeMillis + "|" + format.format(timeMillis));
                return new Tuple2<>(value, random);
            }
        });
        KeyedStream<Tuple2<String, Integer>, String> keyedStream = mapStream
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> value) throws Exception {
                        return value.f0;
                    }
                });

        // 如果连续10s内,没有数据进来,则会话窗口断开。
        WindowedStream<Tuple2<String, Integer>, String, TimeWindow> window = keyedStream
                .window(ProcessingTimeSessionWindows.withGap(Time.seconds(10)));
        window.sum(1).print();
        window.apply(new MyTimeWindowFunction()).print();
        env.execute();
    }
}

事件驱动

package icu.wzk.demo07;


import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import icu.wzk.demo06.MyTimeWindowFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

import java.text.SimpleDateFormat;
import java.util.Random;


/**
 * 会话窗口
 * @author wzk
 * @date 14:10 2024/6/24
**/
public class SessionWindow {

    private static final Random RANDOM = new Random();

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        DataStreamSource<String> dataStreamSource = env.socketTextStream("0.0.0.0", 9999);
        SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
                long timeMillis = System.currentTimeMillis();
                int random = RANDOM.nextInt(10);
                System.err.println("value : " + value + " random : " + random + " timestamp : " + timeMillis + "|" + format.format(timeMillis));
                return new Tuple2<>(value, random);
            }
        });
        KeyedStream<Tuple2<String, Integer>, String> keyedStream = mapStream
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> value) throws Exception {
                        return value.f0;
                    }
                });

        // 如果连续10s内,没有数据进来,则会话窗口断开。
        WindowedStream<Tuple2<String, Integer>, String, TimeWindow> window = keyedStream
                .window(ProcessingTimeSessionWindows.withGap(Time.seconds(10)));
        window.sum(1).print();
        window.apply(new MyCountWindowFunction()).print();
        env.execute();
    }
}

MyTimeWindowFunction

package icu.wzk.demo06;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;


/**
 * 基于时间驱动 TimeWindow
 * @author wzk
 * @date 10:26 2024/6/22
**/
public class MyTimeWindowFunction implements WindowFunction<Tuple2<String,Integer>, String, String, TimeWindow> {

    @Override
    public void apply(String s, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<String> out) throws Exception {
        SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");

        int sum = 0;

        for(Tuple2<String,Integer> tuple2 : input){
            sum +=tuple2.f1;
        }

        long start = window.getStart();
        long end = window.getEnd();

        out.collect("key:" + s + " value: " + sum + "| window_start :"
                + format.format(start) + "  window_end :" + format.format(end)
        );
    }
}

MyCountWindow

package icu.wzk.demo06;


import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;


/**
 * 基于事件驱动 GlobalWindow
 * @author wzk
 * @date 10:27 2024/6/22
**/
public class MyCountWindowFunction implements WindowFunction<Tuple2<String, Integer>, String, String, GlobalWindow> {

    @Override
    public void apply(String s, GlobalWindow window, Iterable<Tuple2<String, Integer>> input, Collector<String> out) throws Exception {
        SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
        int sum = 0;
        for (Tuple2<String, Integer> tuple2 : input){
            sum += tuple2.f1;
        }
        // 无用的时间戳,默认值为: Long.MAX_VALUE,因为基于事件计数的情况下,不关心时间。
        long maxTimestamp = window.maxTimestamp();
        out.collect("key:" + s + " value: " + sum + "| maxTimeStamp :"
                + maxTimestamp + "," + format.format(maxTimestamp)
        );
    }
}
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
利用java8 的 CompletableFuture 优化 Flink 程序
|
2月前
|
消息中间件 资源调度 Java
用Java实现samza转换成flink
【10月更文挑战第20天】
|
3月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
171 4
|
3月前
|
消息中间件 NoSQL Kafka
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
82 4
|
3月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
102 3
|
3月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
50 0
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1451 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
174 56
|
11天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。