GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化

简介: Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。

Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。


今天给小伙伴们分享的这份Python数据分析入门手册本着实用性的目的,着眼于整个数据分析的流程,介绍了从数据采集到可视化的大致流程。



内容涵盖数据的获取(即网络爬虫程序的设计)、前期数据的清洗和处理、运用机器学习算法进行建模分析,以及使用可视化的方法展示数据及结果。希望借此为Python初学者打开数据分析领域的大门,初窥数据分析的奥秘。


限于文章篇幅原因,只能以截图的形式展示出来,有需要的小伙伴可以  点击这里获取!

第1章 准备

第1章主要讲解了Python集成开发环境的搭建。考虑到初学者容易为安装第三方库犯难,又介绍了三种简单实用的方法来安装这些常见的库。接着对几个后面要用到的高级语法进行了简单介绍,为之后的应用打下基础。


第2章 数据的获取

第2章集中讲解了数据采集的流程,即网络爬虫程序的设计与实现。没有拘泥于使用Python的内置库 urllib 库进行实现,而是直接介绍了requests和其他更加简洁强大的库来完成程序的设计。在进阶内容中,对常见的编码问题、异常处理、代理P、验证码、机器人协议、模拟登录,以及多线程等相关问题给出了解决的方案。


第3章 数据的存取与清洗

第3章讲解数据的清洗问题。在具体讲解清洗数据之前,先介绍了TXT、XLSX、JSON、CSV等各种文件的导入和导出的方法,并介绍了Python与MySOL数据库交互的方式。接着介绍了NumPy和pandas库的基本使用方法,这是我们用于数据处理和科学计算的两个强大的工具。最后综合以上的学习介绍了数据的去重、缺失值的填补等经典的数据清洗方法。


第4章 数据的分析及可视化

第4章首先讲解探索性数据分析的应用,并且简单介绍了机器学习基本知识。然后演示如何应用 sklearn 库提供的决策树和最邻近算法来处理分类问题,并尝试根据算法原理手动实现最邻近算法。最后介绍如何使用 pandas、matplotlib 和seaborn这三个库来实现数据的可视化。


第5章 Python与生活

第5章是综合性学习的章节,讲解了三个小项目的完整实现过程旨在通过操作生活中真正的数据来强化前面基础内容的学习。



限于文章篇幅原因,就展示到这里了,有需要的小伙伴可以  点击这里获取!

相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
2月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
319 0
|
28天前
|
SQL 数据挖掘 BI
数据分析的尽头,是跳出数据看数据!
当前许多企业在数据分析上投入大量资源,却常陷入“数据越看越细,业务越看越虚”的困境。报表繁杂、指标众多,但决策难、行动少,分析流于形式。真正有价值的数据分析,不在于图表多漂亮,而在于能否带来洞察、推动决策、指导行动。本文探讨如何跳出数据、回归业务场景,实现数据驱动的有效落地。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
179 2
|
8月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
451 92
|
6月前
|
数据采集 机器学习/深度学习 数据挖掘
数据分析入门:从数据探索到洞察真相
数据分析入门:从数据探索到洞察真相
142 19
|
7月前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
294 21
|
6月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
786 2
|
6月前
|
机器学习/深度学习 传感器 数据采集
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
659 0
|
7月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。

热门文章

最新文章

推荐镜像

更多