【python】python基于tushare股票数据分析可视化(源码+数据+报告)【独一无二】

简介: 【python】python基于tushare股票数据分析可视化(源码+数据+报告)【独一无二】

一.设计思路

主要是用于使用tushare爬取股票数据并进行数据分析和可视化的Python脚本。以下是代码中导入的模块的分析:


1.tushare模块:

import tushare as ts:导入了tushare库并使用别名ts,用于获取股票数据。


2.matplotlib模块:

import matplotlib.pyplot as plt:导入了matplotlib库并使用别名plt,用于绘制数据可视化图表。


3.pandas模块:

import pandas as pd:导入了pandas库并使用别名pd,用于处理和分析数据,包括读取和操作CSV文件、创建数据框、进行数据描述性统计等。


4.glob模块和os模块:

import glob:导入glob模块,用于查找匹配的文件名。

import os:导入os模块,用于操作操作系统相关的功能,如获取文件大小等。


这些导入的模块用于不同的功能,tushare用于获取股票数据,matplotlib用于数据可视化,pandas用于数据处理和分析,而glob和os用于文件操作。


二、数据抓取

导入了tushare库,使用了该库提供的接口获取股票数据。

通过设置token,建立了与tushare的连接。

以下是获取数据的主要步骤和代码分析:


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈


设置 token

token = '672ce8cxxxxxxxxxxxxxxxxxxxxxd4e120'
ts.set_token(token)


获取股票数据

stock_code = '600665.SH'
stock_code1 = '600208.SH'
stock_code2 = '600162.SH'

pro = ts.pro_api()


使用pro.daily()方法获取每只股票的日交易数据,并保存为CSV文件

# 代码略....

df.to_csv('600665.SH.csv', index=False)
df.to_csv('600208.SH.csv', index=False)
df.to_csv('600162.SH.csv', index=False)


通过设置token建立与tushare的连接,确保可以使用tushare的API。

使用tushare的pro_api()方法创建了一个pro对象,用于获取股票数据。


通过pro.daily()方法获取了每只股票(使用不同的ts_code参数)的日交易数据。


获取的数据被保存为CSV文件,文件名对应不同的股票代码,例如’600665.SH.csv’,‘600208.SH.csv’,‘600162.SH.csv’。


这样,通过调用tushare提供的API和设置的token,可以获取股票的日交易数据并将其保存为CSV文件以供后续分析和可视化。


三、分析数据

  1. 数据的基本信息查看
    查看股票数据的行索引
print("行索引:")
print(df.index)


数据集情况

print("\n数据集情况:")
print(df.head())   显示前几行数据


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈


数据类型

print("\n数据类型:")
print(df.dtypes)

数据集描述统计信息

print("\n数据集描述统计信息:")
print(df.describe())


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈


统计各字段空缺的个数

print("\n各字段空缺的个数:")
print(df.isnull().sum())


通过代码,首先查看了股票数据集的一些基本信息。行索引:展示数据集的行索引,即数据的序号。数据集情况:显示了数据集的前几行数据,以便了解数据的结构和内容。数据类型:展示了每个列的数据类型,有助于了解数据的特征。


数据集描述统计信息:提供了数据的统计摘要,包括均值、标准差、最小值、最大值等。各字段空缺的个数:统计了每个字段中缺失值的数量,有助于识别数据质量问题。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈


数据的特征工程。增加 “DayHL” 列,表示日最高价和最低价之间的差值

df['DayHL'] = df['high'] df['low']


将修改后的数据保存到 new_merged.csv 文件中

df.to_csv('new_merged.csv', index=False)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈


四、数据的可视化

# 创建一个走势图
plt.figure(figsize=(12, 6))   设置图表大小

# 绘制股票的收盘价走势
plt.plot(df.index, df['close'], label='Close Price', color='blue', linewidth=2)

# 添加标题和标签
plt.title('Stock Price Trend for 600162.SH')
plt.xlabel('Date')
plt.ylabel('Close Price')

# 显示图例
plt.legend()

# 显示走势图
plt.grid(True)
plt.show()

通过上述代码,创建了一个走势图,展示了股票的收盘价走势。

图表的标题、x轴标签和y轴标签用于说明图表的内容。

图例显示了数据中的列标签,以便理解图表中的线条代表的含义。

最后,通过plt.show()显示了绘制的走势图。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈


展示了三支不同股票的最高价格。每个柱子代表一支股票,横坐标是股票代码,纵坐标是最高价。通过比较柱子的高度,可以看出这三支股票中哪支的最高价最高。这有助于比较不同股票的价格表现。


显示了股票代码为’600162.SH’的股票的最高价和最低价随时间的变化。横坐标表示日期,纵坐标表示价格。通过观察折线的走势,可以了解特定股票在一段时间内的价格波动情况,包括最高价和最低价的变化趋势。


示了三支不同股票的闭盘价格中最低价的前5名。每个柱子代表一支股票,横坐标是股票代码,纵坐标是最低闭盘价。通过比较柱子的高度,可以看出哪些股票的最低闭盘价最低,这有助于确定在一段时间内价格波动最大的股票。


展示了三支不同股票的市值占比。饼状图将三支股票的市值按比例分成不同的扇形。每个扇形代表一支股票,其大小表示该股票在三支股票中的市值占比。这个图表有助于了解不同股票在总市值中所占的比例,帮助投资者分析投资组合的分布情况。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 股票数据分析 ” 获取。👈👈👈

目录
打赏
0
1
1
0
63
分享
相关文章
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
55 20
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
222 92
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
82 22
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
155 73
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
138 71
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
95 5
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
93 1

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等