LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法

简介: LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法

1 井字游戏

题目描述

字符串数组作为井字游戏的游戏板 board,判断该游戏板有没有可能最终形成游戏板是一个 3 x 3 数组,由字符 " ",“X” 和 “O” 组成。字符 " " 代表一个空位。

两个玩家轮流将字符放入空位,一个玩家执X棋,另一个玩家执O棋“X” 和 “O” 只允许放置在空位中,不允许对已放有字符的位置进行填充。

当有 3 个相同(且非空)的字符填充任何行、列或对角线时,游戏结束,board生成

解题思路与代码

分类讨论

    public static boolean validBoard(String[] board) {
        int xCount = 0, oCount = 0;
        for (String row: board)
            for (char c: row.toCharArray()) {
                if (c == 'X') xCount++;
                if (c == 'O') oCount++;
            }
        //X与O 一样多,或者X比O多一个(X赢则X多一个,O赢则一样多)
        if (oCount != xCount && oCount != xCount - 1) return false;
        if (win(board, "XXX") && oCount != xCount - 1) return false;
        if (win(board, "OOO") && oCount != xCount) return false;
        return true;
    }
    public static boolean win(String[] board, String flag) {
        for (int i = 0; i < 3; ++i) {
                    //纵向3连
            if (flag.equals("" + board[i].charAt(0) + board[i].charAt(1) +
                    board[i].charAt(2)))
                return true;
            //横向3连
            if (flag.equals(board[i]))
                return true;
        }
        // \向3连
        if (flag.equals(""+
                board[0].charAt(0)+board[1].charAt(1)+board[2].charAt(2)))
            return true;
        // /向3连
        if
        (flag.equals(""+board[0].charAt(2)+board[1].charAt(1)+board[2].charAt(0)))
            return true;
        return false;
    }

2 优势洗牌

题目描述

给定两个大小相等的数组 A 和 B,A 相对于 B 的优势可以用满足 A[i] > B[i] 的索引 i 的数目来描述。

返回 A 的任意排列,使其相对于 B 的优势最大化。

解题思路与代码

    public static int[] advantageCount(int[] A, int[] B) {
        int[] sortedA = A.clone();
        Arrays.sort(sortedA);//找一个代价最小的去匹配B中的,比B大,在A中又是最小的
        int[] sortedB = B.clone();
        Arrays.sort(sortedB);//避免比较时,A每次都要重头遍历
        Map<Integer, Deque<Integer>> assigned = new HashMap();
        for (int b: B)
            assigned.put(b, new LinkedList());
        Deque<Integer> remaining = new LinkedList();
        int j = 0;
        for (int a: sortedA) {
            if (a > sortedB[j]) {
                assigned.get(sortedB[j++]).add(a);
            } else {
                remaining.add(a);
            }
        }
        int[] ans = new int[B.length];
        for (int i = 0; i < B.length; ++i) {
            if (assigned.get(B[i]).size() > 0)
                ans[i] = assigned.get(B[i]).removeLast();
            else
                ans[i] = remaining.removeLast();
        }
        return ans;
    }


  • 时间复杂度:O(N log N),其中 N 是 A 和 B 的长度。
  • 空间复杂度:O(N)。

3 Dota2参议院

题目描述

Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇)

Dota2 参议院由来自两派的参议员组成。现在参议院希望对一个 Dota2 游戏里的改变作出决定。他们以一个基于轮为过程的投票进行。在每一轮中,每一位参议员都可以行使两项权利中的一项:

  1. 禁止一名参议员的权利:参议员可以让另一位参议员在这一轮和随后的几轮中丧失所有的权利。
  2. 宣布胜利: 如果参议员发现有权利投票的参议员都是同一个阵营的,他可以宣布胜利并决定在游戏中的有关变化。

给定一个字符串代表每个参议员的阵营。字母 “R” 和 “D” 分别代表了 Radiant(天辉)和 Dire(夜魇)。然后,如果有 n 个参议员,给定字符串的大小将是 n。


以轮为基础的过程从给定顺序的第一个参议员开始到最后一个参议员结束。这一过程将持续到投票结束。所有失去权利的参议员将在过程中被跳过。


假设每一位参议员都足够聪明,会为自己的政党做出最好的策略,你需要预测哪一方最终会宣布胜利并在 Dota2 游戏中决定改变。输出应该是 Radiant 或 Dire。

解题思路与代码

    public String predictPartyVictory(String senate) {
        int n = senate.length();
        Queue<Integer> radiant = new LinkedList<Integer>();
        Queue<Integer> dire = new LinkedList<Integer>();
        for (int i = 0; i < n; ++i) {
            if (senate.charAt(i) == 'R') {
                radiant.offer(i);
            } else {
                dire.offer(i);
            }
        }
        while (!radiant.isEmpty() && !dire.isEmpty()) {
            int radiantIndex = radiant.poll(), direIndex = dire.poll();
            if (radiantIndex < direIndex) {
                radiant.offer(radiantIndex + n);
            } else {
                dire.offer(direIndex + n);
            }
        }
        return !radiant.isEmpty() ? "Radiant" : "Dire";
    }

  • 时间和空间:O(n)

目录
相关文章
|
12天前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
48 15
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
107 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
4天前
|
运维 监控 算法
企业局域网监控软件中 Java 优先队列算法的核心优势
企业局域网监控软件是数字化时代企业网络安全与高效运营的基石,犹如一位洞察秋毫的卫士。通过Java实现的优先队列算法,它能依据事件优先级排序,确保关键网络事件如异常流量、数据泄露等被优先处理,保障系统稳定与安全。代码示例展示了如何定义网络事件类并使用PriorityQueue处理高优先级事件,尤其在面对疑似风险时迅速启动应急措施。这一核心技术助力企业在复杂网络环境中稳健前行,护航业务腾飞。
49 32
|
2天前
|
存储 监控 算法
探秘局域网桌面监控:深入剖析 Java 语言核心算法
在数字化办公时代,局域网桌面监控如同企业的“智慧鹰眼”,确保工作效率与数据安全。本文以Java为载体,揭示哈希表在监控中的关键应用。通过高效的数据结构和算法,哈希表能快速索引设备连接信息,大幅提升监控的时效性和响应速度。代码示例展示了如何用Java实现设备网络连接监控,结合未来技术如AI、大数据,展望更智能的监控体系,助力企业在数字化浪潮中稳健前行。
|
18天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
27 6
|
2月前
|
存储 缓存 算法
C语言在实现高效算法方面的特点与优势,包括高效性、灵活性、可移植性和底层访问能力
本文探讨了C语言在实现高效算法方面的特点与优势,包括高效性、灵活性、可移植性和底层访问能力。文章还分析了数据结构的选择与优化、算法设计的优化策略、内存管理和代码优化技巧,并通过实际案例展示了C语言在排序和图遍历算法中的高效实现。
52 2
|
4天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
17天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
152 80
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
5天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。