LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法

简介: LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法

1 井字游戏

题目描述

字符串数组作为井字游戏的游戏板 board,判断该游戏板有没有可能最终形成游戏板是一个 3 x 3 数组,由字符 " ",“X” 和 “O” 组成。字符 " " 代表一个空位。

两个玩家轮流将字符放入空位,一个玩家执X棋,另一个玩家执O棋“X” 和 “O” 只允许放置在空位中,不允许对已放有字符的位置进行填充。

当有 3 个相同(且非空)的字符填充任何行、列或对角线时,游戏结束,board生成

解题思路与代码

分类讨论

    public static boolean validBoard(String[] board) {
        int xCount = 0, oCount = 0;
        for (String row: board)
            for (char c: row.toCharArray()) {
                if (c == 'X') xCount++;
                if (c == 'O') oCount++;
            }
        //X与O 一样多,或者X比O多一个(X赢则X多一个,O赢则一样多)
        if (oCount != xCount && oCount != xCount - 1) return false;
        if (win(board, "XXX") && oCount != xCount - 1) return false;
        if (win(board, "OOO") && oCount != xCount) return false;
        return true;
    }
    public static boolean win(String[] board, String flag) {
        for (int i = 0; i < 3; ++i) {
                    //纵向3连
            if (flag.equals("" + board[i].charAt(0) + board[i].charAt(1) +
                    board[i].charAt(2)))
                return true;
            //横向3连
            if (flag.equals(board[i]))
                return true;
        }
        // \向3连
        if (flag.equals(""+
                board[0].charAt(0)+board[1].charAt(1)+board[2].charAt(2)))
            return true;
        // /向3连
        if
        (flag.equals(""+board[0].charAt(2)+board[1].charAt(1)+board[2].charAt(0)))
            return true;
        return false;
    }

2 优势洗牌

题目描述

给定两个大小相等的数组 A 和 B,A 相对于 B 的优势可以用满足 A[i] > B[i] 的索引 i 的数目来描述。

返回 A 的任意排列,使其相对于 B 的优势最大化。

解题思路与代码

    public static int[] advantageCount(int[] A, int[] B) {
        int[] sortedA = A.clone();
        Arrays.sort(sortedA);//找一个代价最小的去匹配B中的,比B大,在A中又是最小的
        int[] sortedB = B.clone();
        Arrays.sort(sortedB);//避免比较时,A每次都要重头遍历
        Map<Integer, Deque<Integer>> assigned = new HashMap();
        for (int b: B)
            assigned.put(b, new LinkedList());
        Deque<Integer> remaining = new LinkedList();
        int j = 0;
        for (int a: sortedA) {
            if (a > sortedB[j]) {
                assigned.get(sortedB[j++]).add(a);
            } else {
                remaining.add(a);
            }
        }
        int[] ans = new int[B.length];
        for (int i = 0; i < B.length; ++i) {
            if (assigned.get(B[i]).size() > 0)
                ans[i] = assigned.get(B[i]).removeLast();
            else
                ans[i] = remaining.removeLast();
        }
        return ans;
    }


  • 时间复杂度:O(N log N),其中 N 是 A 和 B 的长度。
  • 空间复杂度:O(N)。

3 Dota2参议院

题目描述

Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇)

Dota2 参议院由来自两派的参议员组成。现在参议院希望对一个 Dota2 游戏里的改变作出决定。他们以一个基于轮为过程的投票进行。在每一轮中,每一位参议员都可以行使两项权利中的一项:

  1. 禁止一名参议员的权利:参议员可以让另一位参议员在这一轮和随后的几轮中丧失所有的权利。
  2. 宣布胜利: 如果参议员发现有权利投票的参议员都是同一个阵营的,他可以宣布胜利并决定在游戏中的有关变化。

给定一个字符串代表每个参议员的阵营。字母 “R” 和 “D” 分别代表了 Radiant(天辉)和 Dire(夜魇)。然后,如果有 n 个参议员,给定字符串的大小将是 n。


以轮为基础的过程从给定顺序的第一个参议员开始到最后一个参议员结束。这一过程将持续到投票结束。所有失去权利的参议员将在过程中被跳过。


假设每一位参议员都足够聪明,会为自己的政党做出最好的策略,你需要预测哪一方最终会宣布胜利并在 Dota2 游戏中决定改变。输出应该是 Radiant 或 Dire。

解题思路与代码

    public String predictPartyVictory(String senate) {
        int n = senate.length();
        Queue<Integer> radiant = new LinkedList<Integer>();
        Queue<Integer> dire = new LinkedList<Integer>();
        for (int i = 0; i < n; ++i) {
            if (senate.charAt(i) == 'R') {
                radiant.offer(i);
            } else {
                dire.offer(i);
            }
        }
        while (!radiant.isEmpty() && !dire.isEmpty()) {
            int radiantIndex = radiant.poll(), direIndex = dire.poll();
            if (radiantIndex < direIndex) {
                radiant.offer(radiantIndex + n);
            } else {
                dire.offer(direIndex + n);
            }
        }
        return !radiant.isEmpty() ? "Radiant" : "Dire";
    }

  • 时间和空间:O(n)

目录
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
55 3
|
25天前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
|
2月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
154 15
|
2月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
63 3
|
2月前
|
算法 Go
【LeetCode 热题100】55:跳跃游戏(详细解析)(Go语言版)
本篇解析详细讲解了 LeetCode 热题 55——跳跃游戏(Jump Game)。通过判断是否能从数组起点跳至终点,介绍了两种高效解法:贪心算法和反向思维。贪心法通过维护最远可达位置 `maxReach` 实现一次遍历,时间复杂度 O(n),空间复杂度 O(1);反向法则从终点回溯,判断是否可到达起点。两者均简洁高效,适合面试使用。延伸题目如 LeetCode 45 进一步提升挑战。
104 7
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
16天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
16天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。

热门文章

最新文章