Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。该技术蓬勃发展,应用广泛,如人脸识别门禁系统、刷脸支付软件等。

人脸识别在本质上是根据每张人脸图像中不同像素点的颜色进行数据建模与判断。人脸图像的每个像素点的颜色都有不同的值,这些值可以组成人脸的特征向量,不过因为人脸图像的像素点很多,所以特征变量也很多,需要利用PCA进行数据降维。

本项目先对人脸数据进行读取和处理,再通过PCA进行数据降维,最后用K近邻算法搭建模型进行人脸识别。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),,数据项统计如下

数据集中图片的文件名由4部分组成:

l 第1部分是该张图片对应的人脸编号;

l 第2部分是固定分隔符“_”;

l 第3部分是该张图片在该人脸10张图片中的顺序编号;

l 第4部分是文件扩展名“.jpg”。

以“10_0.jpg”为例,10代表编号为10的人的图片,“_”是第1部分和第3部分的分隔符,0代表这个人的10张图片中编号为0的那一张,“.jpg”为文件扩展名。 

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 图片数据读取

使用os模块列出前5个图片的名称:

image.png

从上图可以看到,总共有9个字段。

关键代码:

image.png

3.2 特征变量提取

使用Image. convert('L')方法进行特征变量提取:

image.png

关键代码:

image.png

3.3 图片灰度值数据框显示

使用Pandas工具的DataFrame()方法进行转换:

image.png

3.4 批量处理图片

通过for循环批量处理图片:

image.png

3.5 目标变量提取

通过Image模块的open()方法读取目标变量:

image.png

关键代码:

image.png

4.探索性数据分析

4.1 显示第一张图片

用Image工具的open()方法进行进行图片的显示:

image.png

5.特征工程

5.1 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试。关键代码如下:

image.png

5.2 PCA数据降维

使用PCA算法进行数据的降维,输出如下:

image.png

关键代码如下:

image.png

6.构建人脸识别模型

主要使用KNeighborsClassifier算法,用于目标分类。

6.1 模型构建

 

 

编号

模型名称

参数

1

KNN人脸识别模型

n_neighbors=5(默认参数值)

2

weights=’uniform’

 

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、召回率、F1分值等等。

模型名称

指标名称

指标值

测试集

KNN人脸识别模型

准确率

0.8875

查准率

0.9012

召回率

0.8875

F1分值

0.8753

从上表可以看出,人脸识别模型效果良好。

关键代码如下:

image.png

7.2 查看是否过拟合

查看训练集和测试集的分数:

image.png

通过结果可以看到,训练集分数和测试集分数基本相当,所以没有出现过拟合现象。

关键代码:

image.png

7.3 分类报告

人脸识别模型分类报告:

image.png

从上图可以看出,分类为1的F1分值为0.67;分类为2的F1分值为1.00,其它类型的以此类推。

8.结论与展望

综上所述,本项目采用了PCA数据降维和KNN分类模型,最终证明了我们提出的模型效果良好。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1TMdSS-NsYWgeXMlCdW1EVQ 
提取码:kd4a
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
25 2
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
3天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
5天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
4天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。