Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。该技术蓬勃发展,应用广泛,如人脸识别门禁系统、刷脸支付软件等。

人脸识别在本质上是根据每张人脸图像中不同像素点的颜色进行数据建模与判断。人脸图像的每个像素点的颜色都有不同的值,这些值可以组成人脸的特征向量,不过因为人脸图像的像素点很多,所以特征变量也很多,需要利用PCA进行数据降维。

本项目先对人脸数据进行读取和处理,再通过PCA进行数据降维,最后用K近邻算法搭建模型进行人脸识别。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),,数据项统计如下

数据集中图片的文件名由4部分组成:

l 第1部分是该张图片对应的人脸编号;

l 第2部分是固定分隔符“_”;

l 第3部分是该张图片在该人脸10张图片中的顺序编号;

l 第4部分是文件扩展名“.jpg”。

以“10_0.jpg”为例,10代表编号为10的人的图片,“_”是第1部分和第3部分的分隔符,0代表这个人的10张图片中编号为0的那一张,“.jpg”为文件扩展名。 

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 图片数据读取

使用os模块列出前5个图片的名称:

image.png

从上图可以看到,总共有9个字段。

关键代码:

image.png

3.2 特征变量提取

使用Image. convert('L')方法进行特征变量提取:

image.png

关键代码:

image.png

3.3 图片灰度值数据框显示

使用Pandas工具的DataFrame()方法进行转换:

image.png

3.4 批量处理图片

通过for循环批量处理图片:

image.png

3.5 目标变量提取

通过Image模块的open()方法读取目标变量:

image.png

关键代码:

image.png

4.探索性数据分析

4.1 显示第一张图片

用Image工具的open()方法进行进行图片的显示:

image.png

5.特征工程

5.1 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试。关键代码如下:

image.png

5.2 PCA数据降维

使用PCA算法进行数据的降维,输出如下:

image.png

关键代码如下:

image.png

6.构建人脸识别模型

主要使用KNeighborsClassifier算法,用于目标分类。

6.1 模型构建

 

 

编号

模型名称

参数

1

KNN人脸识别模型

n_neighbors=5(默认参数值)

2

weights=’uniform’

 

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、召回率、F1分值等等。

模型名称

指标名称

指标值

测试集

KNN人脸识别模型

准确率

0.8875

查准率

0.9012

召回率

0.8875

F1分值

0.8753

从上表可以看出,人脸识别模型效果良好。

关键代码如下:

image.png

7.2 查看是否过拟合

查看训练集和测试集的分数:

image.png

通过结果可以看到,训练集分数和测试集分数基本相当,所以没有出现过拟合现象。

关键代码:

image.png

7.3 分类报告

人脸识别模型分类报告:

image.png

从上图可以看出,分类为1的F1分值为0.67;分类为2的F1分值为1.00,其它类型的以此类推。

8.结论与展望

综上所述,本项目采用了PCA数据降维和KNN分类模型,最终证明了我们提出的模型效果良好。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1TMdSS-NsYWgeXMlCdW1EVQ 
提取码:kd4a
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
1月前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
47 21
|
1月前
|
人工智能 算法 搜索推荐
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
433 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
3月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
9天前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
9天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9天前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
11天前
|
数据采集 搜索推荐 C语言
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。

热门文章

最新文章