【数据科学老司机在线教学第二期】阿里云大数据生态协同过滤推荐系统实战

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 人工智能千千万,没法落地都白干。 自从上次老司机用神经网络训练了热狗识别模型以后,群众们表示想看一波更加接地气,最好是那种能10分钟上手,一辈子受用的模型。 这次,我们就通过某著名电商公司的公开数据集,在阿里云大数据生态之下快速构建一个基于协同过滤的推荐系统!

第一期回顾现已开放:

【数据科学老司机在线教学第一期】人人用得起的机器学习平台——现场构建热狗识别模型

直播视频传送门
文字版教程

第二期内容预告来袭!

人工智能千千万,没法落地都白干。

自从上次老司机用神经网络训练了热狗识别模型以后,群众们表示想看一波更加接地气,最好是那种能10分钟上手,一辈子受用的模型。

这次,我们就通过某著名电商公司的公开数据集,在阿里云大数据生态之下快速构建一个基于协同过滤的推荐系统!

为你揭开深夜剁手的惨案,重新成为万千少女的梦想(大雾)!

20174261059158152

点下方链接直达传授现场,提前收藏,本周四(6月27日)敬请锁定:

【数据科学老司机在线教学第二期】阿里云大数据生态协同过滤推荐系统实战

主讲人:鱼哲,还是那位不愿意透露真实身份的产品经理

时间:2019 年 6月 27日 19:00 到 20:00

内容结构:

  1. 推荐系统简介 —— 15 分钟
  2. 基于Dataworks+PAI,手把手现场教学,教你快速构建一个基于协同过滤的推荐系统,甚至仅花5块钱即可运行(包含抽奖)—— 40 分钟
  3. 在线QA环节——10 分钟

重点提示,重点提示,重点提示,重要的事情说三遍:

直播期间会有各种好玩的互动,参与互动即有机会获得随机惊喜小礼品一件!

提前扫下方钉钉二维码或搜索群号 23304116 加入PAI用户交流群,即可在当天参与互动,

20190625102802

后续系列直播信息、有奖活动均会第一时间在群内告知!

同时还可随时咨(sao)询(rao)讲师相关问题,秒级响应速度为您服务~

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
241 0
|
2月前
|
人工智能 分布式计算 DataWorks
阿里云大数据AI产品月刊-2025年8月
阿里云大数据& AI 产品技术月刊【2025年 8 月】,涵盖 8 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
301 1
|
2月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。
|
2月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
284 1
|
3月前
|
搜索推荐 算法 Java
基于大数据的旅游可视化及推荐系统
本项目围绕数字化旅游系统的开发与应用展开研究,结合SpringBoot、Layui、MySQL、Java等技术,构建基于协同过滤算法的智能推荐系统。内容涵盖项目背景、研究现状、开发工具及功能结构,旨在提升旅游体验与管理效率,推动旅游业数字化转型。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。