Python基于局部离群因子LOF算法(LocalOutlierFactor)实现信用卡数据异常值检测项目实战

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python基于局部离群因子LOF算法(LocalOutlierFactor)实现信用卡数据异常值检测项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

异常检测是数据挖掘领域研究的基本问题之一,已被广泛应用于网络入侵检测、信用卡欺诈侦查等领域。局部离群因子(简称LOF)算法是一种具有较好检测效果和适用性的基于密度的异常点检测算法。


近年来,随着我国资本市场开放程度的进一步提升,国外金融机构的介入,国内整体的信用状况不断改善,银行卡市场的多元化主体构成的产业链已经日臻成熟,我国信用卡产业上升到一个新的阶段,得到了飞速发展。但是信用卡的高增长速度也伴随着一系列的问题,对个人来说,信用卡的使用给我们带来很大的便利,但使用稍有不当就会产生风险,造成一定的经济损失。对于发卡银行,由于市场竞争比较激烈,发卡行为了实现利益最大化,它们往往低估信用卡风险,随意降低发卡对象和信用卡发放审核的标准,使得我国信用卡客户的总体质量降低很多,这样信用卡业务的欺诈风险不断增加,而我国的信用体系还没有建立和发挥作用。虽然信用卡交易中的欺诈行为在整个交易中所占比例很小,但是欺诈行为一旦发生,给银行造成的损失也是非常巨大的。因此有效识别信用卡欺诈风险,对信用卡数据集进行欺诈检测、对信用卡风险进行有效管理和控制,是我国各信用卡发卡行和信用卡产业管理层共同面临、迫切需要解决的问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

Time

 

2

V1

 

3

V2

 

4

V3

 

5

V4

 

6

V5

 

7

V6

 

8

V7

 

9

V8

 

……

81

Class

目标变量

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据项

使用Pandas工具的columns查看数据项名称:

image.png

关键代码:

image.png

3.2查看数据集的形状

使用Pandas工具的shape查看数据集的形状:

image.png

关键代码:

image.png

4.探索性数据分析

4.1绘制数据项直方图

由于数据项比较多,为了更加清晰地进行展示,分4个直方图来画,如下图所示:

image.png

image.png

image.png

image.png

通过上图可以看出,大多数特征都聚集在0值附近,说明信用卡欺诈还是比较少的。

4.2计算欺诈案例的数量以及欺诈率

结果如下:

欺诈率:

image.png

计算欺诈数量和正常的数量:

image.png

关键代码如下:

image.png

image.png

4.3相关性分析

由于数据项比较多,相关性分析分为3个图进行展示,如下图所示:

image.png

image.png

image.png

通过上图可以看出,各个特征之间的相关性比较低,即各个特征相对独立。

关键代码如下:

image.png

5.特征工程

5.1 建立特征数据和标签数据

Class为标签数据,除Class之外的为特征数据。关键代码如下:

image.png

5.2查看特征标签的形状

结果如下图:

image.png

关键代码如下:

image.png

6.构建LOF模型

主要使用sklearn工具的LocalOutlierFactor()方法构建局部离群因子模型,用于目标异常数据检测。  

6.1建模

编号

模型名称

参数

1

LOF检测模型

n_neighbors=20

2

contamination=outlier_fraction

关键代码如下:

image.png

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

验证集

LOF异常检测模型

准确率

0.9952

查准率

0.0765

查全率

0.0769

F1

0.0767

从上表可以看出,准确率将近100%,而F1分值0.0767,说明数据集类型分布不均匀导致,但是不影响本次项目的应用。

关键代码如下:

image.png

7.2 分类报告

分类报告如下图所示:

image.png

从上图可以看到,类别为0的F1值为1,分类为1的F1值为0.08,准确率100%;出现这个低F1值的原因为数据集类别分布极度不均匀,但是这并不太影响本次项目的应用。

7.3 绘制ROC曲线

ROC曲线,如下图所示:

image.png

通过上图可以看到,AUC的值为0.78,说明模型效果良好。

8.结论与展望

综上所述,使用了局部离群因子LOF算法对信用卡数据进行异常检测。实验结果表明,该算法可以有效检测出信用卡数据中存在的异常数据。可用于日常生活中进行建模预测,以提高生产价值和效能。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1zLe4VsP1gIh-WLTa7K3BIQ 
提取码:cjat
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
25 2
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3