阿里云百炼模型训练实战流程:从入门到实战应用

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【7月更文第2天】阿里云百炼是AI大模型开发平台,提供一站式服务,涵盖模型训练到部署。用户从注册登录、创建应用开始,选择模型框架,配置资源。接着,进行数据准备、预处理,上传至阿里云OSS。模型训练涉及设置参数、启动训练及调优。训练后,模型导出并部署为API,集成到应用中。平台提供监控工具确保服务性能。通过百炼,开发者能高效地进行大模型实战,开启AI创新。

在当今AI技术飞速发展的时代,阿里云作为全球领先的云计算服务提供商,推出了“阿里云百炼”这一创新平台,旨在简化大模型的训练、部署和应用过程,助力企业和开发者快速构建AI解决方案。本文将深入浅出地介绍如何在阿里云百炼平台上实现模型训练的实战流程,从环境搭建到模型训练,再到应用部署,让你轻松掌握大模型训练的全过程。

一、初识阿里云百炼

001.png

阿里云百炼是一站式的AI大模型开发与应用平台,它整合了从模型训练、推理到部署的全链条服务,为用户提供强大的计算能力、丰富的模型选择以及便捷的开发环境。平台支持多语言模型接入,无论是新手还是经验丰富的开发者,都能在这里找到适合自己的开发路径。

二、准备工作:环境配置与模型选择

  1. 注册与登录:首先,访问阿里云百炼官方网站并注册账号,登录后进入控制台。

  2. 创建应用:在应用中心选择“应用管理”,点击“新增应用”,按照指引填写应用名称、描述等基本信息,选择合适的模型框架,如通义千问等,开始构建你的项目。
    002.png

  3. 配置资源:根据模型训练的需求,合理配置所需的计算资源,包括CPU、GPU类型和数量,以及存储空间等。阿里云百炼提供了灵活的资源配置方案,确保训练效率与成本的最优平衡。

三、数据准备与预处理

  1. 数据收集:明确训练目标后,开始收集或整理相关领域的训练数据。确保数据质量与多样性,以覆盖模型学习的各种场景。
    003.png

  2. 数据清洗与标注:使用阿里云提供的数据处理工具或第三方服务对数据进行清洗,去除无效、重复或错误的数据,并对必要数据进行标注,提高训练效果。
    005.png

  3. 上传数据:将处理好的数据集上传至阿里云OSS存储,随后在百炼平台的应用配置中关联数据源,为模型训练做准备。

四、模型训练与调优

004.png

  1. 设置训练参数:在百炼平台上,根据模型特性与任务需求,配置训练参数,包括学习率、批次大小、训练轮次等。

  2. 启动训练:点击“开始训练”,百炼平台会自动分配资源并执行训练任务。期间,你可以在训练监控界面实时查看训练进度、损失函数变化等关键指标。

  3. 模型评估与调优:训练完成后,利用平台提供的评估工具对模型性能进行测试,根据评估结果调整模型参数或数据集,进行多次迭代,直至达到满意的效果。

五、模型部署与应用

  1. 模型导出:训练好的模型可以导出为指定格式,如ONNX或TensorFlow Serving,便于后续部署。

  2. 接口服务化:在百炼平台部署模型为API服务,只需简单配置即可生成可调用的API接口,为前端应用或后端服务提供智能支持。
    006.png

  3. 流式输出与集成:如开头提到的实战案例,通过SpringBoot接入阿里云百炼模型服务,实现流式输出内容,前端通过调用接口实时获取模型响应,完成AI功能的集成。

六、监控与维护

部署后的模型服务需要持续监控其性能与稳定性,利用阿里云百炼的监控工具,实时查看API调用情况、响应时间及错误率等,确保服务的高效运行。

结语

阿里云百炼以其全面的开发工具链、高效的资源管理和灵活的部署选项,大大降低了大模型开发的门槛,使企业与开发者能够快速实现从模型训练到应用落地的全流程。通过上述实战流程,你不仅能够掌握大模型训练的精髓,更能开启属于自己的AI创新之旅。随着AI技术的不断进步,阿里云百炼将持续赋能,助力每一位开发者在AI浪潮中乘风破浪。

相关实践学习
如何快速体验知识检索增强应用
在应用广场中您可以挑选智能体API应用、官方预置完整工程链路的知识检索增强(RAG)应用、流程编排应用,以及官方最佳实践的写作应用妙笔等,通过应用快速将通义千问系列等大语言模型能力接入到业务解决方案中。
目录
相关文章
|
15天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
15天前
|
机器学习/深度学习 传感器 自动驾驶
探索机器学习在图像识别中的创新应用
本文深入分析了机器学习技术在图像识别领域的最新进展,探讨了深度学习算法如何推动图像处理技术的突破。通过具体案例分析,揭示了机器学习模型在提高图像识别准确率、效率及应用场景拓展方面的潜力。文章旨在为读者提供一个全面的视角,了解当前机器学习在图像识别领域的创新应用和未来发展趋势。
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
81 11
|
25天前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
49 4
|
26天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
55 5
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
37 2
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
29天前
|
存储 Serverless API
基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体
本文介绍了如何使用阿里云百炼大模型服务平台构建一个多智能体的智能导购应用,并将其部署到钉钉。通过百炼的Assistant API,您可以快速构建一个包含规划助理、手机导购、冰箱导购和电视导购的智能导购系统。文章详细讲解了从创建函数计算应用、访问网站、验证智能导购效果到将商品检索应用集成到智能导购中的全过程,帮助您快速实现智能导购功能。
基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
33 1