PAI机器学习平台如何进行分布式训练?

简介: 【7月更文挑战第1天】PAI机器学习平台如何进行分布式训练?

PAI机器学习平台如何进行分布式训练?

PAI机器学习平台通过分布式训练(DLC)进行大规模的分布式训练,该过程涉及多个关键步骤,包括任务配置、环境设置、数据集管理等方面。以下将具体介绍如何进行分布式训练:

  1. 准备工作
    • 创建OSS Bucket存储空间:如果需要进行模型微调或增量训练,需要创建一个OSS Bucket来存储相关数据[^2^]。
    • 登录PAI控制台:通过访问阿里云的控制台,进入PAI工作空间,选择要操作的工作空间名称。
  2. 新建任务
    • 进入新建任务页面:在工作空间页面的左侧导航栏选择“模型开发与训练”>“分布式训练(DLC)”,然后单击“新建任务”进入任务配置页面[^4^]。
  3. 配置训练任务参数
    • 环境配置:选择合适的节点镜像和运行环境。PAI支持官方镜像和自定义镜像,可以根据实际需求进行配置[^4^]。
    • 数据集配置:指定任务运行过程中所需的数据集位置,确保已准备好的数据集能够在训练任务中使用[^4^]。
    • 启动命令:设置任务启动时需要执行的命令,可以注入环境变量以获取特定值[^4^]。
    • 三方库和代码配置:可以选择三方库列表或requirements.txt文件来管理所需的第三方库,并配置代码存储位置或上传代码文件[^4^]。
    • 资源配置:根据任务需求,配置资源类型、来源、配额以及各类节点的数量和规格,如CPU核数、GPU卡数等[^4^]。
    • 框架高级配置:对于使用PyTorch等框架的任务,可以通过高级配置提高训练灵活性,满足特定训练场景[^4^]。
  4. 提交任务
    • 提交方式:通过控制台、Python SDK或命令行提交DLC任务。在控制台中,完成上述配置后,提交任务即可[^4^]。
  5. 监控和管理任务
    • 任务监控:在任务提交后,可以在PAI控制台查看任务的运行状态、日志和资源消耗情况,以确保任务按预期执行[^1^]。
  6. 后续操作
    • 部署和调试:训练完成后,可以直接在PAI上部署模型,并进行在线调试,验证模型推理效果[^2^]。
    • 微调训练和增量训练:如果预训练数据集与实际业务场景不完全匹配,可以进行微调训练或增量训练,以优化模型效果[^2^]。

综上所述,通过分布式训练(DLC),PAI机器学习平台为用户提供了高效、灵活的分布式计算能力,适用于各种规模的深度学习任务。对于希望利用分布式训练提升模型性能的企业或个人开发者而言,合理配置和优化上述步骤,可以显著提高训练效率和模型质量。

目录
打赏
0
0
1
1
623
分享
相关文章
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
32 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
11.7K Star!这个分布式爬虫管理平台让多语言协作如此简单!
分布式爬虫管理平台Crawlab,支持任何编程语言和框架的爬虫管理,提供可视化界面、任务调度、日志监控等企业级功能,让爬虫开发管理效率提升300%!
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
49 1
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
1月前
|
新一代 Cron-Job 分布式任务调度平台 正式发布!
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
133 12
新一代 Cron-Job分布式任务调度平台 部署指南
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
87 10
|
17天前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
24 0
新一代 Cron-Job分布式调度平台,v1.0.5版本发布!
增加标签路由能力和多项功能优化!其中Tag标签路由的功能,测试环境多迭代场景下,可通过给任务配置Tag标签,实现任务路由到不同的执行器上。
24 0
DeepRec Extension 打造稳定高效的分布式训练
DeepRec Extension 打造稳定高效的分布式训练
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!

热门文章

最新文章