技术心得记录:手把手教系列之FIR滤波器设计

简介: 技术心得记录:手把手教系列之FIR滤波器设计

【导读】:前面的文章介绍了移动平均滤波器、IIR滤波器、梳状滤波器,今天来谈谈FIR滤波器的设计实现。


本篇文章依然采用4W1H进行描述,从What Why Where When How几个维度展开。为了便于理解4W1H,依然把5W1H的图附上。


FIR滤波器之What?


LTI线性时不变系统冲激响应按照其是有限长还是无限长可分为FIR(Finite Impulse Response)有限长冲激响应系统以及无限长冲激响应IIR(Infinite Impulse Response)系统。FIR是全零点系统,也即Z传递函数在Z复平面极点全在Z=0处。至于这些概念是如何得来的,不是本文重点,如果有兴趣深究,可以查阅数字信号处理方面的书籍。


H


(


Z


)


=



i


=


0


N


?


1


h


(


n


)


Z


?


n


H(Z)=\sum{i=0}^{N-1}h(n)Z^{-n}


H(Z)=i=0∑N?1?h(n)Z?n


FIR滤波器具有多种实现形式,比如直接型、二阶级联型、Lattice结构,都只是上述基本传递函数的不同数学表达形式,没有本质区别,只是在具体算法实现上各具特点。这里将二阶级联形式描述如下。


二阶级联的意思是将上述传递函数分解为二阶多项式块连乘的形式,其数学表达如下:


H


(


//代码效果参考:http://www.jhylw.com.cn/503036129.html

Z

)


=



k


=


0


M


(


b


0


k


+


b


1


k


Z


?


1


+


b


2


k


Z


?


2


)


H(Z)=\prod{k=0}^M(b{0k}+b{1k}Z^{-1}+b{2k}Z^{-2})


H(Z)=k=0∏M?(b0k?+b1k?Z?1+b2k?Z?2)


FIR滤波器之Why?


为啥称前面的传递函数形式的系统为有限长冲激响应呢?要从概念上理解,首先须从冲激响应说起,什么是系统的冲激响应?系统在单位冲激函数激励下引起的零状态响应被称之为该系统的“冲激响应”。


那么什么又是是冲激函数呢?


单位冲激函数(Unit-Impulse Function)是信号与系统学科中的一个重要概念。它是一个面积等于1的理想化了的窄脉冲。也就是说,这个脉冲的幅度等于它的宽度的倒数。当这个脉冲的宽度愈来愈小时,它的幅度就愈来愈大。当它的宽度按照数学上极限法则趋近于零时,那么它的幅度就趋近于无限大,这样的一个脉冲就是“单位冲激函数”。在实际工程中,像“单位冲激函数”这样的信号是不存在的,至多也就是近似而已。在理论上定义这样一个函数,完全是为了分析研究方便的需要。


单位//代码效果参考:http://www.jhylw.com.cn/403121719.html

冲激函数又称为狄拉克函数,定义为:


t



0


t\neq{0}


t?=0时,


δ


(


t


)


=


0


\delta(t)=0


δ(t)=0



?




δ


(


t


)


d


t


=


1


\int{ {-}\infty}^{\infty}\delta(t)dt=1


∫?∞∞?δ(t)dt=1


这玩意纯数学表达仅为从严谨角度出发,却不易懂,在数字信号处理领域或者称为离散系统领域,定义单位冲激(也有的称为单位采样/单位函数/单位脉冲,管它张三、李四)这里只需要明白其物理含义即可:


δ


(


n


)


=


{


1


,


(


n


=


0


)


0


,


(


n



0


)


\delta(n)={1,(n=0)0,(n≠0){1,(n=0)0,(n≠0)\begin{cases} 1, (n=0) \ 0, (n\neq0) \end{cases}


δ(n)={1,(n=0)0,(n?=0)?


那么所谓单位冲激函数响应,就是一个系统输入这样一个能量激励,在输出端所观测到的响应信号,那么对于FIR系统而言,其响应在经过有限长的序列后,最后将稳定在0,这就是有限长冲激响应的内涵,而无限长则是有这样一个冲激激励后,其响应经过无限长序列后仍不会稳定到0。再进一步思考,为什么呢?因为FIR系统输出不会反馈回输入端,则保证其输出响应是有限长序列, 因此,“有限冲激响应”几乎与“无反馈”等价。但是,如果采用反馈,但脉冲响应是有限的,则滤波器仍然是FIR。 一个示例是移动平均滤波器,其中每次有新采样进入时都会减去(反馈)第N个先前的采样。即使使用反馈,该滤波器也具有有限的脉冲响应:在N个采样样本之后,输出 将始终为零。IIR滤波器使用反馈,因此,当输入脉冲时,理论上输出会无限地振荡。所以对于这两个概念的区分从字面去理解即可。


在实践中,即使是IIR系统,其脉冲响应也通常接近零,并且可以忽略不计。但是,引起IIR或FIR响应的物理系统是不同的,这就是区别的重要性。例如,由电阻器,电容器和/或电感器(也许还有线性放大器)组成的模拟电子滤波器通常是IIR滤波器。另一方面,基于不使用反馈的抽头延迟线的离散时间滤波器(通常是数字滤波器)必然是FIR滤波器。模拟滤波器中的电容器(或电感器)具有“记忆特性也即储能特性”,并且其内部状态不会因脉冲而完全放松。但是在后一种情况下,在脉冲到达抽头延迟线的末端之后,系统不再对该脉冲进行存储,并返回到其初始状态。超出该点的脉冲响应恰好为零。多说一句,在使用IIR时,是否稳定包括在模拟电路设计时,需要考虑的一个重要指标就是其系统的相位裕度的概念。有兴趣的可以去研究一下。


FIR滤波器之Where?


FIR滤波器的应用领域非常的广泛:


音频信号处理领域,会在信号处理层大量运用FIR滤波器进行信号滤波Sigma-Delta ADC芯片内部就利用数字逻辑电路实现了FIR滤波器涉及到采集信号的仪器仪表领域广为应用系统辨识领域,对于系统建模也常常采用滤波器滤除采集信号,以消除噪声提高建模的准确性图像处理领域也广为应用…


说了这么多,就是想说这个东东非常有用,个人认为这是电子类开发工程师进阶神器,值得深入研究,反复探究,这也是为什么花这么多精力写这个系列的初心,希望自己的一些经验你能帮助到其他的人。所以如果你没有这方面的经验,刚好看到这系列的文章,还请帮忙转发分享以帮助到更多的人,哈哈哈。当然如果您是这方面的行家里手如果发现文中有错误或者需要改进的地方,也真诚的期待能告诉与我,帮助我纠正错误。所以导读中所说恳请指正,绝非套话。


FIR滤波器之When?


当实现传感器时,个人建议首先理清楚信号链模型,信号的频域带宽,是否有潜在混入噪声的可能。是故个人认为:


如果在硬件电路处理后任然有噪声,此时就可以考虑采用滤波器,如果所用芯片算力不错,就可以考虑采用FIR滤波器如果在硬件也能实现有源滤波器能解决产品中的噪声干扰,但是发现硬件的方法需要成本比较高,或者PCB面积受限时,也推荐考虑采用数字滤波器实现。因为往往有源滤波器要实现一个比较好的通频带高Q值时,其阶数往往很高,而且可能需要一些特殊规格的电阻电容实现所需的频带,此时数字滤波器仅需要一段代码搞定,而且效果往往比硬件滤波器更好也更灵活。如果在系统中发现采用IIR拓扑类型滤波器无法满足线性相位需求,或者发现使用IIR滤波器,滤波器输出出现严重失真或者不稳定现象时,推荐考虑采用FIR滤波器。再比如你是用FPGA设计一个系统,也需要实现模拟信号采集,此时也可以考虑直接用数字电路直接实现FIR滤波器,因为FPGA的硬并行特性为实现高阶FIR滤波器提供了非常好硬件基础。…


FIR滤波器之How?


设计FIR滤波器从书本知识,可以发现有窗函数法、切比雪夫逼近法、最小均方差等方法,这些方法从数学理论上给出了设计原理,但作为工程师而言,个人认为只需要理解其概念内涵即可。学以致用才是目的,所以强大的MATLAB 工具fdatool以及实现了这些基本的设计方法。当然如果对于MATLAB函数很熟悉,直接来段MATLAB程序效果也是一样的。这里仍然利用fdatool来示例如何设计实现FIR滤波器。


本文以实现采样频率48kHz,带宽为100Hz~10KHz带通滤波器,假定是一个麦克风语音采集系统,人的发声频率在100Hz(男低音)到10000Hz(女高音)范围内。


假设设计一个512阶的FIR带通滤波器,其指标为:


Fstop1为60Hz, Fpass1为100HzFpass2为10000Hz, Fstop1为10200HzWstop1 为40dB,Wstop2 为40dB,


其幅频响应为:


相频响应如下图,可见在通频带内,随频率的增加,其相位延迟也是线性增加的,这就是线性相位的含义。


前面说到冲激响应,这里将图附上帮助理解。


其参数太长就不贴在这里了,直接放到测试代码中。


接下来就进行C代码实现,由其Z传递函数,比较容易得到其差分方程为:


y



n



=



i


=


0


N


h


i


x



n


?


i



y【n】=\sum_{i=0}^{N}h_ix【n-i】


y【n】=i=0∑N?hi?x【n?i】


C语言实现及测试程序如下:


#include


#include

相关文章
|
6月前
【论文实操】从ACNet中得到启发:非对称卷积块的使用可以有效提高ACC。即插即用!
【论文实操】从ACNet中得到启发:非对称卷积块的使用可以有效提高ACC。即插即用!
287 0
【论文实操】从ACNet中得到启发:非对称卷积块的使用可以有效提高ACC。即插即用!
|
6月前
|
编解码 算法 计算机视觉
【MATLAB】全网唯一的13种信号分解+FFT傅里叶频谱变换联合算法全家桶
【MATLAB】全网唯一的13种信号分解+FFT傅里叶频谱变换联合算法全家桶
122 0
|
存储 缓存 5G
时域结构 | 带你读《5G 空口设计与实践进阶 》之十七
在时域,NR 支持基于符号灵活定义的帧结构,以满足各种时延需求。
时域结构 | 带你读《5G 空口设计与实践进阶 》之十七
|
6月前
|
数据采集 算法 数据可视化
python实现时序平滑算法SG滤波器
python实现时序平滑算法SG滤波器
|
6月前
|
算法 Java vr&ar
保持无损连接和函数依赖的3NF合成算法(详细简介)期末必备
保持无损连接和函数依赖的3NF合成算法(详细简介)期末必备
72 0
|
机器学习/深度学习 传感器 算法
【滤波器设计】基于matlab实现数字滤波器和均衡器设计
【滤波器设计】基于matlab实现数字滤波器和均衡器设计
|
机器学习/深度学习 编解码 数据可视化
深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
|
5G 索引
频域结构 | 带你读《5G 空口设计与实践进阶 》之十九
在频域,为满足多样带宽需求,NR 支持灵活可扩展的 Numerology。这相应也决定了 NR 在频域资源上的物理量度是可变的。
频域结构 | 带你读《5G 空口设计与实践进阶 》之十九
数字信号处理实验二 IIR数字滤波器设计及软件实现
数字信号处理实验二 IIR数字滤波器设计及软件实现
913 1
数字信号处理实验二 IIR数字滤波器设计及软件实现
|
机器学习/深度学习 算法
深度之眼(十二)——svd分解的应用
深度之眼(十二)——svd分解的应用
深度之眼(十二)——svd分解的应用