【基于FFT的自由响应非线性检测方案】使用归零早期FFT的非线性检测研究(Matlab代码实现)

简介: 【基于FFT的自由响应非线性检测方案】使用归零早期FFT的非线性检测研究(Matlab代码实现)

💥1 概述

文献来源:

这项工作提出了一类检测和表征暂态响应测量非线性的时频方法。这些方法适用于响应随着响应幅度的衰减而变得越来越线性的系统。响应数据的离散傅里叶变换是在初始响应的各个部分都为零的情况下得到的。这些频率响应,被称为零早期快速傅立叶变换(ZEFFTs),获得线性频率响应函数(frf)的通常形状,因为更多的初始非线性响应被取消。因此,非线性是由一个质变的形状的ZEFFT作为初始无效部分的长度变化证明。这些光谱显示出对非线性的敏感性,即使它仅在响应的前几个周期中活跃,也能显示出它的存在,就像机械关节的宏观滑移一样。它们还提供了对非线性特性的洞察,潜在地揭示了模态之间的非线性能量传递或系统线性行为的模态振幅。在某些情况下,人们可以从后期线性响应中识别线性模型,并使用它来重建系统在以前的时间执行的响应,如果它是线性的。这表明了非线性的严重程度及其对测量响应的影响。用滑移或冲击非线性系统的分析和实验数据验证了这些方法。


原文摘要:


This work presents a class of time-frequency methods for detecting and characterizing

nonlinearity in transient response measurements.  The methods are intended for systems whose  response becomes increasingly linear as the response amplitude decays. The discrete Fourier Transform of the response data is found with various sections of the initial response set to zero.  These frequency responses, dubbed Zeroed Early-time Fast Fourier Transforms (ZEFFTs), acquire the usual shape of linear Frequency Response Functions (FRFs) as more of the initial nonlinear response is nullified.  Hence, nonlinearity is evidenced by a qualitative change in the shape of the ZEFFT as the length of the initial nullified section is varied.  These spectra are shown to be sensitive to nonlinearity, revealing its presence even if it is active in only the first few cycles of a response, as may be the case with macro-slip in mechanical joints.  They also give insight into the character of the nonlinearity, potentially revealing nonlinear energy transfer between modes or the modal amplitudes below which a system behaves linearly.  In some cases one can identify a linear model from the late time, linear response, and use it to reconstruct the response that the system would have executed at previous times if it had been linear.  

This gives an indication of the severity of the nonlinearity and its effect on the measured response.  The methods are demonstrated on both analytical and experimental data from systems with slip or impact nonlinearities.  

📚2 运行结果

部分代码:

% Specify how systems are connected
    at_ns = [2,6]; % attachment happens between this pair of nodes.
    fext_ns = 5; % Node at which external force is applied
    fnl_vec = zeros(Ntot,1); fnl_vec(at_ns(1)) = -1; fnl_vec(at_ns(2)) = 1;
    fext_vec = zeros(Ntot,1); fext_vec(fext_ns(1)) = 1;
    dnodes = [1:Ntot];
    vnodes = [(Ntot+1):(Ntot*2)];
    % Damping Matrix    
    cfactk = 0.00003; % multiplied by K to get damping.
    cfactm = 8; % Multiplied by M to get damping
    % for k = 1:5; eval(['c',num2str(k),' = cfact*k',num2str(k),';']); end
    C1 = cfactk*K1 + cfactm*M1;
    C2 = cfactk*K2 + cfactm*M2; % proportional damping
    Ctot = [C1, zeros(size(C1,1),size(C2,2));
        zeros(size(C2,1),size(C1,2)), C2];
    % Linearized System Analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % add a linear spring between attachment nodes
        Mlin = Mtot;
        Klin = Ktot;
        Klin(at_ns,at_ns) = Klin(at_ns,at_ns) + kat*[1, -1; -1, 1];
        % Linear Damping matrix:
        Clin = Ctot;
        Clin(at_ns,at_ns) = Clin(at_ns,at_ns) + cfactk*kat*[1, -1; -1, 1];
    % State Space Eigenanalysis
    Slin = [Clin, Mlin; Mlin, zeros(size(Mlin))];
    Rlin = [-Klin, zeros(size(Mlin));
        zeros(size(Mlin)), Mlin];
    Alin = (Slin\Rlin);
    [Philin,lamlin] = eig(Alin);
    lamlin = diag(lamlin);
    [junk,sind] = sort(abs(lamlin) - 0.001*min(abs(lamlin))*(imag(lamlin) > 0));
    lamlin = lamlin(sind);
    Philin = Philin(:,sind);
%         % Plot Mode Shapes
%         figure(1)
%         hls = plot([1:Ntot], imag(Philin(1:Ntot,1:2:end ))); grid on;
%         legend(hls, num2str([1:Ntot].'));
%         xlabel('X-coordinate');
%         ylabel('Im\{Mode Shape\}');
    wns = abs(lamlin);
    fns = wns/2/pi;
    zts = -real(lamlin)./abs(lamlin);
    disp('Natural Frequencies:, Damping Ratios:');
    [fns, zts]
%     DispFnZt(lamlin) - replace 2 lines abouve with this if you have the EMA Functions toolbox
    % Nonlinear Parameters
    NLType = 'bang'
    if strcmp(NLType,'bang');
        % Bang (Contact) Nonlinearity
        delcont = 1e-3;
        k4mult = 20; % Factor by which k4 increases: k4_contact = k4*k4mult
        c4mult = 1; % Factor by which c4 increases: c4_contact = c4*c4mult
    elseif strcmp(NLType,'cubic');
        % Cubic Spring
        katnl = 1e8;
    else
        error('NLType not recognized');
    end
    % Force paramters
        % length of half-sine force pulse
        % This is normalized in the EOM to unit area and multiplied by Afnl
        tfp = 1e-4;
        Afnl = 4e9;
    % Which Response to Use in evaluating Nonlinearity (i.e. x1, x2, x3..?)
    respind = 6;
    % Number of numerical derivatives to evaluate.  This M-file simulates
    % the displacement response of the 5-DOF system.  To simulate the
    % measurement of the velocity or acceleration response, the
    % displacement response is differentiated using finite differences
    % (i.e. Matlab's 'diff' command.)  This parameter sets the number of
    % derivatives to perform:
    nders = 2;
        % nders = 0; => use displacement


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码及详细文章

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
16天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于深度学习网络的USB摄像头实时视频采集与火焰检测matlab仿真
本项目使用MATLAB2022a实现基于YOLOv2的火焰检测系统。通过USB摄像头捕捉火焰视频,系统实时识别并标出火焰位置。核心流程包括:视频采集、火焰检测及数据预处理(图像标准化与增强)。YOLOv2模型经特定火焰数据集训练,能快速准确地识别火焰。系统含详细中文注释与操作指南,助力快速上手。
|
3月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
70 4
|
3月前
|
存储 Serverless
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
|
3月前
|
算法
基于IEEE802.11g标准的OFDM信号帧检测matlab仿真
此项目旨在应对无线信号识别挑战,利用MATLAB/Simulink开发IEEE 802.11g OFDM信号识别算法。通过对标准的深入研究,设计并计算PLCP前导码数据,采用信号相关性进行信号鉴定。项目构建了完整的发射机模型,在AWGN信道下评估性能。通过生成特定的短训和长训序列,实现帧头检测,并模拟真实信号传输。测试使用MATLAB 2022a版本,展示了信号生成与识别的关键步骤及结果。
|
4月前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
4月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。

热门文章

最新文章

下一篇
无影云桌面