Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持文献综述、实验设计、代码生成、结果解释和报告撰写,全面提升科研效率。
  2. 技术:基于大型语言模型(LLM),结合自主代理系统和模块化工具,实现科研流程自动化。
  3. 应用:适用于机器学习、生物医学、材料科学等多个领域,显著降低研究成本。

正文(附运行示例)

Agent Laboratory 是什么

AgentLabLogo

Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型(LLM),旨在加速科学发现、降低成本并提高研究质量。它能够接受人类提供的研究想法,并通过文献综述、实验设计和报告撰写三个阶段,生成全面的研究输出,包括代码库和研究报告。

Agent Laboratory 支持用户在每个阶段提供反馈和指导,从而提升研究的整体质量。实验结果表明,与传统的自主研究方法相比,Agent Laboratory 能够显著降低研究费用,最高可减少 84% 的成本。

Agent Laboratory 的主要功能

  • 文献综述:自动收集和整理与研究主题相关的文献,为后续研究提供参考。
  • 实验设计与执行:基于文献综述和研究目标,制定详细的实验计划,并自动执行实验。
  • 代码生成:自动生成用于实验的机器学习代码,支持多种 LLM 后端,如 gpt-4o、o1-mini 和 o1-preview。
  • 结果解释:对实验结果进行分析和解释,为撰写研究报告提供基础。
  • 报告撰写:生成结构化的研究报告,涵盖摘要、引言、背景、相关工作、方法、实验设置、结果和讨论等部分。
  • 用户交互:支持自主模式和共同驾驶模式,用户可在每个阶段提供反馈和指导,提升研究质量。

Agent Laboratory 的技术原理

  • 基于大型语言模型(LLM):使用预训练的 LLM,如 gpt-4o、o1-mini 和 o1-preview,生成自然语言文本,包括文献综述、实验计划、代码和研究报告。
  • 自主代理系统:通过多个专门的代理(如 PhD 代理、Postdoc 代理、ML Engineer 代理和 Professor 代理)协作,完成文献检索、实验设计、代码编写、结果解释和报告撰写等任务。
  • 模块化工具:mle-solver 模块自动生成和优化机器学习代码,paper-solver 模块生成和优化研究报告,确保实验和报告的质量。
  • 迭代改进机制:代理在每个阶段进行自我反思,根据实验结果或错误信号生成改进措施,基于迭代优化提高代码和报告的质量。
  • 用户交互与反馈:支持自主模式和共同驾驶模式,用户在每个阶段提供反馈和指导,代理根据反馈进行调整和优化,提高研究的整体质量。

如何运行 Agent Laboratory

1. 克隆 GitHub 仓库

首先,使用以下命令克隆仓库:

git clone git@github.com:SamuelSchmidgall/AgentLaboratory.git
AI 代码解读

2. 设置并激活 Python 环境

python -m venv venv_agent_lab
source venv_agent_lab/bin/activate
AI 代码解读

3. 安装依赖库

pip install -r requirements.txt
AI 代码解读

4. 安装 pdflatex(可选)

sudo apt install pdflatex
AI 代码解读

此步骤用于支持 LaTeX 源码编译。如果没有 sudo 权限,可以通过设置 --compile-latex "false" 来关闭 PDF 编译功能。

5. 运行 Agent Laboratory

python ai_lab_repo.py --api-key "API_KEY_HERE" --llm-backend "o1-mini" --research-topic "YOUR RESEARCH IDEA"
AI 代码解读

如果没有安装 pdflatex,可以运行以下命令:

python ai_lab_repo.py --api-key "API_KEY_HERE" --llm-backend "o1-mini" --research-topic "YOUR RESEARCH IDEA" --compile-latex "false"
AI 代码解读

6. 共同驾驶模式

要启用共同驾驶模式,只需设置 --copilot-mode "true"

python ai_lab_repo.py --api-key "API_KEY_HERE" --llm-backend "o1-mini" --research-topic "YOUR RESEARCH IDEA" --copilot-mode "true"
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
23
23
2
332
分享
相关文章
MM-StoryAgent:交大阿里联合开源!多模态AI一键生成儿童故事绘本+配音
MM-StoryAgent 是上海交通大学与阿里巴巴联合推出的开源多模态、多智能体框架,用于生成沉浸式的有声故事绘本视频,支持文本、图像、语音等多种模态的生成与对齐。
30 7
MM-StoryAgent:交大阿里联合开源!多模态AI一键生成儿童故事绘本+配音
AI-Researcher:告别熬夜肝论文!港大开源AI科研神器,从选题到发表全自动
AI-Researcher 是香港大学数据科学实验室推出的开源自动化科研工具,基于大型语言模型(LLM)代理,支持从研究想法到论文发表的全流程自动化,涵盖文献综述、算法设计、实验验证和论文撰写等功能。
75 8
AI-Researcher:告别熬夜肝论文!港大开源AI科研神器,从选题到发表全自动
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
Gemma 3 是谷歌最新推出的开源多模态AI模型,支持超过35种语言,具备文本、图像及短视频处理能力,提供四种模型尺寸,优化单GPU性能,适用于多种AI应用场景。
91 8
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
Anus:公开整活!完全用 Manus 复刻 Manus 功能的开源 AI 智能体项目
Anus 是一个开源 AI 智能体项目,复刻了 Manus 的部分功能,支持自然语言指令执行、多代理协作、多模态输入处理等功能,旨在为开发者提供强大且灵活的工具。
59 1
Anus:公开整活!完全用 Manus 复刻 Manus 功能的开源 AI 智能体项目
Nanobrowser:开源版OpenAI Operator!AI自动操控浏览器,复杂网页任务一键搞定
Nanobrowser 是一款开源的 Chrome 扩展工具,基于多智能体系统实现复杂的网页任务自动化,支持多种大型语言模型,完全免费且注重隐私保护。
94 1
Heygem:开源数字人克隆神器!1秒视频生成4K超高清AI形象,1080Ti显卡也能轻松跑
Heygem 是硅基智能推出的开源数字人模型,支持快速克隆形象和声音,30秒内完成克隆,60秒内生成4K超高清视频,适用于内容创作、直播、教育等场景。
546 0
积极拥抱AI,F5携手NVIDIA赋能加速AI应用交付
积极拥抱AI,F5携手NVIDIA赋能加速AI应用交付
21 4
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
89 2
|
12天前
|
Spring AI与DeepSeek实战一:快速打造智能对话应用
在 AI 技术蓬勃发展的今天,国产大模型DeepSeek凭借其低成本高性能的特点,成为企业智能化转型的热门选择。而Spring AI作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用各类 AI 服务。本文将手把手教你通过spring-ai集成DeepSeek接口实现普通对话与流式对话功能,助力你的Java应用轻松接入 AI 能力!虽然通过Spring AI能够快速完成DeepSeek大模型与。
293 11
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
758 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用

热门文章

最新文章