【调度算法】服务组合优选问题的指标选择与评估

简介: 【调度算法】服务组合优选问题的指标选择与评估

服务组合“优化”与“优选”

看文献时不时看到这俩词,有的是优化,有的是优选,本来没往这方面想还没觉得有啥,完全是突然冒出的念头,然后就给绕进去了(淦),所以先让我把这俩玩意辨一辨不然我睡不着。

谷歌翻译把“服务组合优化”翻译成“Service portfolio/composition optimization”(portfolio和composition两个词都有文献在用,不过一般文献标题更多是用composition,所以我后边涉及到的话都用composition),把“服务组合优选”翻译成“Service composition selection”,但是标题里一般不会出现selection这个词,正文中也通常是“select service”这样的表达,所以一番查找下来,给我感觉是“Service composition optimization”才更像是正儿八经的专业术语。不过英文好像不太区分这个,因为即使是“selectin”也是要依赖“optimization algorithm”的。

下面是一段根据AI回复所做的总结:

  • 服务组合优化:“优化”通常指通过应用算法寻找最优解的过程。通过整合多个不同领域、不同地域的制造资源,实现分布式制造资源的优化配置。其目标函数通常是提高资源利用率、降低总成本、缩短总完工时间等,更倾向于选择不同的优化算法进行求解。
  • 服务组合优选:“优选”更侧重从多个可选服务中选额最合适的组合。针对特定任务或者需求,从海量服务中挑选出满足多方利益的最佳服务组合。其目标往往涉及对不同服务提供者的性能、信誉度等方面的评估和比较,多采用不同的决策分析方法辅助进行选择。

我自己的理解是,服务组合优选就从指服务组合优化得出的方案集合中选择更加合适的方案,也就是说,服务组合优选实质上是基于服务组合优化结果的一种决策过程,它不仅仅关注技术层面上的“最优解”,还包括对业务需求、用户偏好等多维度因素的考量。但是感觉在我目前看到的中文文献里,这俩词的意思差别不大,标题为“优化”的文献里也有对Paretro解的决策选择过程,所以貌似也不用那么纠结(我也不知道我在纠结啥,总总之后文统一用“优选”这个词)?

服务组合优选流程

我将服务组合优选流程简单概括为3个步骤:(确定多目标问题时的)指标评估——算法求解——(选择最优方案时的)指标评估。下面主要关注前后两次的评估过程。

第一次指标评估(确定多目标问题)

这次评估是为了确定多目标问题的优化目标和评价指标。它主要关注于确定哪些指标是重要的,以及如何将这些指标结合起来形成一个多目标优化问题。

  • 目的:这一阶段的目的是确定多目标问题的优化目标和评价指标。它主要关注于确定哪些指标是重要的,以及如何将这些指标结合起来形成一个多目标优化问题。
  • 侧重点:侧重于评价单个服务或初步组合的性能指标,如成本、响应时间、可靠性等,这些指标通常是量化的。
  • 方法:通常采用量化的评价方法,如基于特定标准或模型计算每个服务或服务组合的性能得分。
  • 结果应用:结果主要用于筛选候选服务或服务组合,并作为优化算法的输入,以求解最佳服务组合。

在服务筛选与初步评价阶段,指标的确定往往关注于量化和客观衡量服务的能力,以确保服务能满足基本的要求和标准。常用的方法包括:

  1. 性能基准:确定服务必须达到的最低性能标准。例如,在物流服务中,可能包括最长配送时间、最低准时率等。
  2. 成本效益分析:通过比较成本与效益(如服务速度、可靠性等),找出性价比最高的服务。这要求确定成本相关指标和效益相关指标。
  3. 服务质量(QoS)指标:根据服务的质量属性,如响应时间、可用性、吞吐量等,来评价服务。

第二次指标评估(选择最优方案)

  • 目的:在得到Pareto最优解集之后,这一阶段的评估目的是在多个非劣解之间进行选择,以确定最终实施的解决方案。它主要关注于对每个 Pareto 最优解进行具体评估,确定其在各个目标维度上的性能表现,并进行权衡分析。
  • 侧重点:侧重于根据决策者的偏好和实际应用场景中的约束条件,对多个目标进行权衡和折中。
  • 方法:可能包括定性的方法和定量的方法,如为不同目标分配权重、进行偏好排序、使用理想点方法等,这些方法更多地依赖于决策者的主观判断和偏好。
  • 结果应用:结果用于从Pareto最优解集中选择一个最终的解决方案,这通常需要考虑除性能指标外的其他因素,如成本预算、实施难度等。

总的来说,初始阶段的指标评估更多地关注于服务性能的量化评价,为算法提供量化的输入;而决策阶段的指标评估则更加关注于在多个优化目标之间进行权衡和选择,这需要综合考虑量化指标以外的因素,如决策者的偏好和实际约束。

在最终决策阶段,指标的确定更多地考虑到决策者的偏好、目标之间的权衡,以及实际的约束条件。常用的方法包括:

  1. 权重分配:为不同的指标分配权重,以反映它们对最终决策的相对重要性。这种方法要求决策者能明确地表达出不同指标的优先级。
  2. 多准则决策分析(MCDM):例如,层次分析过程(AHP)可以帮助决策者通过构建层次结构模型和进行成对比较,来确定不同指标的相对重要性。TOPSIS方法则是基于每个方案与理想解的距离来进行排名和选择。
  3. 偏好调查:通过问卷调查、访谈等方式,直接收集决策者或用户群体的偏好信息,以辅助决策。这可以帮助明确哪些指标对用户满意度影响更大。
  4. 情景分析:在不同的假设条件下(如不同的市场环境、用户需求变化等),评估各个选项的表现,以确定在特定情境下最重要的指标。

总结

  • 第一次评估的指标确定侧重于量化测量和客观标准,以确保服务或产品能够满足基本的要求或性能标准。
  • 第二次评估的指标确定则更侧重于根据决策者的偏好和实际的约束条件,对多个指标进行权衡和折中,以便做出最适合的选择。
目录
相关文章
|
2月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
104 24
|
3月前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告
国家互联网信息办公室关于发布第十批深度合成服务算法备案信息的公告
2025年3月12日,国家网信办公布第十批深度合成算法备案信息,共395款算法通过公示。根据《互联网信息服务深度合成管理规定》,境内深度合成服务提供者和技术支持者需履行备案手续。具体信息可在中国互联网信息服务算法备案系统查询,疑议请发邮件至指定邮箱。附件含完整备案清单。
|
3月前
|
算法 数据可视化 调度
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
|
3月前
|
存储 算法 文件存储
探秘文件共享服务之哈希表助力 Python 算法实现
在数字化时代,文件共享服务不可或缺。哈希表(散列表)通过键值对存储数据,利用哈希函数将键映射到特定位置,极大提升文件上传、下载和搜索效率。例如,在大型文件共享平台中,文件名等信息作为键,物理地址作为值存入哈希表,用户检索时快速定位文件,减少遍历时间。此外,哈希表还用于文件一致性校验,确保传输文件未被篡改。以Python代码示例展示基于哈希表的文件索引实现,模拟文件共享服务的文件索引构建与检索功能。哈希表及其分布式变体如一致性哈希算法,保障文件均匀分布和负载均衡,持续优化文件共享服务性能。
|
5月前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
174 16
|
7月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
7月前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
10天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密