Spark Standalone与YARN的区别?

简介: 【6月更文挑战第17天】Spark Standalone与YARN的区别?

Spark Standalone与YARN的区别?

Spark Standalone和YARN是Apache Spark的两种不同的集群管理模式,它们在资源管理和作业调度方面有着显著的差异。以下是对两者进行详细的对比:

  1. 资源管理
    • Standalone:Spark自带的独立模式,不依赖于其他外部资源管理系统。Master节点负责资源的管理和调度,Worker节点执行计算任务。资源分配以内核和内存为主,自由度较大[^4^]。
    • YARN:作为Hadoop的一部分,YARN (Yet Another Resource Negotiator) 负责跨应用程序的资源管理工作。它通过Container来分配资源,每个Container代表一定量的资源(如内存和CPU核心)。YARN支持多种调度器(如FIFO、容量调度器和公平调度器),提供动态资源扩缩的灵活性[^3^][^4^]。
  2. 作业提交
    • Standalone:用户直接向Master节点提交作业,Master负责作业的调度和资源的分配。在Client模式下,Driver运行在提交作业的机器上;而在Cluster模式下,Driver运行在Worker节点上[^2^]。
    • YARN:用户将作业提交给YARN的ResourceManager,ResourceManager负责作业的初始化和资源的首次分配。在YARN的Cluster模式下,ApplicationMaster充当Driver的角色,运行在YARN集群中的一个NodeManager上[^3^]。
  3. 容错性
    • Standalone:通过Zookeeper实现Master的高可用性配置,避免了单点故障的问题。如果Worker失败,对应的计算任务会在其他Worker上重新调度执行[^1^]。
    • YARN:利用YARN本身的资源隔离和容错机制,即使ApplicationMaster或NodeManager失败,也能保证作业的正常完成。YARN处理失败的机制更为成熟且经过广泛测试[^3^]。
  4. 监控管理
    • Standalone:提供了Web界面用于监控集群的状态和运行的应用,但相对简单。
    • YARN:通过YARN的ResourceManager UI可以监控整个集群的资源使用情况和应用状态,功能更为全面和强大[^3^]。

综上所述,Spark Standalone模式适合那些需要快速搭建且独立性较强的场景,而YARN模式则更适合需要大规模资源管理和多框架共享资源的复杂环境。在选择两者之间时,应考虑实际的业务需求、集群规模及管理维护的便利性。

目录
打赏
0
57
57
2
625
分享
相关文章
一文带你了解PNPM以及 npm,yarn,pnpm区别
一文带你了解PNPM以及 npm,yarn,pnpm区别
339 9
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
248 3
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
92 1
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
452 3
云服务器 ECS产品使用问题之bin/spark-sql --master yarn如何进行集群模式运行
云服务器ECS(Elastic Compute Service)是各大云服务商阿里云提供的一种基础云计算服务,它允许用户租用云端计算资源来部署和运行各种应用程序。以下是一个关于如何使用ECS产品的综合指南。
spark on yarn模式安装和配置carbondata
前置条件 Hadoop HDFS 和 Yarn 需要安装和运行。 Spark 需要在所有的集群节点上安装并且运行。 CarbonData 用户需要有权限访问 HDFS. 以下步骤仅针对于 Driver 程序所在的节点. (Driver 节点就是启动 SparkContext 的节点)