CCAH-CCA-500-6题:You want YARN to launch no more than 16 containers per node.

简介: 6.What should you do?Each node in your Hadoop cluster, running YARN, has 64GB memory and 24 cores.

6.What should you do?
Each node in your Hadoop cluster, running YARN, has 64GB memory and 24 cores.
Your yarn.site.xml has the following configuration:
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>32768</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>12</value>
</property>
You want YARN to launch no more than 16 containers per node. What should you do?

A.
Modify yarn-site.xml with the following property:
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
B.
Modify yarn-sites.xml with the following property:
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>4096</value>
C.
Modify yarn-site.xml with the following property:
<name>yarn.nodemanager.resource.cpu-vccores</name>
D.
No action is needed: YARN’s dynamic resource allocation automatically optimizes the node
memory and cores


问题:
      Hadoop集群的每台节点内存64G,CPU 24核。当前一个节点可分配的物理内存总量是32768M(32G),可分配的虚拟cpu总个数是12。
   那么yarn在每个节点上,发起不超过16个容器,我们应该怎样配置?

分析:A

   yarn.scheduler.minimum-allocation-mb:最小可申请内存量,默认是1024,我们设置2048M,见如下计算公式

       Maximum memory YARN can utilize on the node
    ————————————————————————————————————————————— = minimum memory per container
       Number of containers
    
配置文件                     配置项名称                                  配置项值
yarn-site.xml        yarn.nodemanager.resource.memory-mb        = Containers个数* 每个Container内存
yarn-site.xml        yarn.scheduler.minimum-allocation-mb        = 每个Container内存
yarn-site.xml        yarn.scheduler.maximum-allocation-mb        = Containers个数* 每个Container内存
mapred-site.xml        mapreduce.map.memory.mb        = 每个Container内存
mapred-site.xml        mapreduce.reduce.memory.mb        = 2 * 每个Container内存
mapred-site.xml        mapreduce.map.java.opts        = 0.8 * 每个Container内存
mapred-site.xml        mapreduce.reduce.java.opts        = 0.8 * 2 * 每个Container内存
yarn-site.xml (check)        yarn.app.mapreduce.am.resource.mb        = 2 * 每个Container内存
yarn-site.xml (check)        yarn.app.mapreduce.am.command-opts        = 0.8 * 2 * 每个Container内存

http://developer.51cto.com/art/201401/426610.htm

目录
相关文章
|
缓存 资源调度 JavaScript
nodejs全局(npm、cnpm、yarn)及缓存基本配置,一篇就搞定
nodejs全局(npm、cnpm、yarn)及缓存基本配置,一篇就搞定
|
7月前
|
资源调度 JavaScript Linux
nvm, node.js, npm, yarn 安装配置
nvm, node.js, npm, yarn 安装配置
317 1
|
2月前
|
缓存 资源调度 JavaScript
npx与npm的差异解析,以及包管理器yarn与Node版本管理工具nvm的使用方法详解
npx与npm的差异解析,以及包管理器yarn与Node版本管理工具nvm的使用方法详解
65 0
|
资源调度 JavaScript
yarn错误The engine “node“ is incompatible with this module
yarn错误The engine “node“ is incompatible with this module
220 0
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+keras】解决cuDNN launch failure : input shape ([32,2,8,8]) [[{{node sequential_1/batch_nor
在使用TensorFlow 2.0和Keras训练生成对抗网络(GAN)时,遇到了“cuDNN launch failure”错误,特别是在调用self.generator.predict方法时出现,输入形状为([32,2,8,8])。此问题可能源于输入数据形状与模型期望的形状不匹配或cuDNN版本不兼容。解决方案包括设置GPU内存增长、检查模型定义和输入数据形状、以及确保TensorFlow和cuDNN版本兼容。
56 1
|
4月前
|
缓存 资源调度 JavaScript
Nodejs 命令行调用 exec 与 spawn 差异--- 解决 spawn yarn ENOENT error
Nodejs 命令行调用 exec 与 spawn 差异--- 解决 spawn yarn ENOENT error
|
存储 弹性计算 资源调度
阿里云E-MapReduce节点优雅下线-基于Yarn Node Labels特性
背景:阿里云E-MapReduce集群(简称EMR集群)部分节点需要下线迁移,但集群资源常年跑满,诉求是节点下线迁移过程中不影响任一任务执行。 本次方案基于Yarn Node Labels的特性进行资源隔离后下线。 下期对官网Graceful Decommission of YARN Nodes的方案进行验证,参考:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html。
|
存储 缓存 资源调度
[Node] Node.js 包管理工具详解npm yarn cnpm npx pnpm
[Node] Node.js 包管理工具详解npm yarn cnpm npx pnpm
解决 ERROR: cannot launch node of type [xxx]: can‘t locate node [xxx] in package [xxx]
解决 ERROR: cannot launch node of type [xxx]: can‘t locate node [xxx] in package [xxx]
902 0
|
资源调度 JavaScript Ubuntu
linux中安装node,npm和yarn
linux中安装node,npm和yarn
994 0
下一篇
DataWorks