【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】

简介: 【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】


1 获取和读取数据集

数据分为训练数据集测试数据集。两个数据集都包括每栋房子的特征,如街道类型、建造年份、房顶类型、地下室状况等特征值。这些特征值有连续的数字、离散的标签甚至是缺失值“na”。只有训练数据集包括了每栋房子的价格,也就是标签。

我们将通过pandas库读入并处理数据。在导入本节需要的包前请确保已安装pandas库。

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import sys 
import d2lzh_pytorch as d2l
torch.set_default_tensor_type(torch.FloatTensor)

假设解压后的数据位于./data/house/目录,它包括两个csv文件。下面使用pandas读取这两个文件。

train_data = pd.read_csv('./data/house/train.csv')
test_data = pd.read_csv('./data/house/test.csv')

训练数据集包括1460个样本、80个特征和1个标签。

train_data.shape # 输出 (1460, 81)

测试数据集包括1459个样本和80个特征。我们需要将测试数据集中每个样本的标签预测出来。

test_data.shape # 输出 (1459, 80)

让我们来查看前4个样本的前4个特征、后2个特征和标签(SalePrice)

train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]

可以看到第一个特征是Id,它能帮助模型记住每个训练样本,但难以推广到测试样本,所以我们不使用它来训练。我们将所有的训练数据和测试数据的79个特征按样本连结。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

2 数据预处理

我们对连续数值的特征做标准化(standardization):设该特征在整个数据集上的均值为μ \muμ,标准差为σ \sigmaσ。那么,我们可以将该特征的每个值先减去μ \muμ再除以σ \sigmaσ得到标准化后的每个特征值。对于缺失的特征值,我们将其替换成该特征的均值。

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))
# 标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
all_features[numeric_features] = all_features[numeric_features].fillna(0)

接下来将离散数值转成One-hot指示特征。举个例子,假设特征MSZoning里面有两个不同的离散值RL和RM,那么这一步转换将去掉MSZoning特征,并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。如果一个样本原来在MSZoning里的值为RL,那么有MSZoning_RL=1且MSZoning_RM=0。

# dummy_na=True表示将缺失值也当作合法的特征值并为其创建指示特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape # (2919, 331)

可以看到这一步转换将特征数从79增加到了331。

最后,通过values属性得到NumPy格式的数据,并转成Tensor方便后面的训练。

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)

3 训练模型

我们使用基本的线性回归模型和平方损失函数来训练模型。

loss = torch.nn.MSELoss()
def get_net(feature_num):
    net = nn.Linear(feature_num, 1)
    for param in net.parameters():
        nn.init.normal_(param, mean=0, std=0.01)
    return net

下面定义比赛用来评价模型的对数均方根误差。给定预测值y ^ 1 , … , y ^ n \hat y_1, \ldots, \hat y_ny^1,,y^n和对应的真实标签y 1 , … , y n y_1,\ldots, y_ny1,,yn,它的定义为

1 n ∑ i = 1 n ( log ⁡ ( y i ) − log ⁡ ( y ^ i ) ) 2 . \sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log(y_i)-\log(\hat y_i)\right)^2}.n1i=1n(log(yi)log(y^i))2.

对数均方根误差的实现如下。

def log_rmse(net, features, labels):
    with torch.no_grad():
        # 将小于1的值设成1,使得取对数时数值更稳定
        clipped_preds = torch.max(net(features), torch.tensor(1.0))
        rmse = torch.sqrt(loss(clipped_preds.log(), labels.log()))
    return rmse.item()

下面的训练函数使用了Adam优化算法。相对之前使用的小批量随机梯度下降,它对学习率相对不那么敏感。

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
    # 这里使用了Adam优化算法
    optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay) 
    net = net.float()
    for epoch in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X.float()), y.float())
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

4 K KK折交叉验证

之前文章介绍了K KK折交叉验证。它将被用来选择模型设计并调节超参数。下面实现了一个函数,它返回第i折交叉验证时所需要的训练和验证数据。

def get_k_fold_data(k, i, X, y):
    # 返回第i折交叉验证时所需要的训练和验证数据
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat((X_train, X_part), dim=0)
            y_train = torch.cat((y_train, y_part), dim=0)
    return X_train, y_train, X_valid, y_valid

K KK折交叉验证中我们训练K KK次并返回训练和验证的平均误差。

def k_fold(k, X_train, y_train, num_epochs,
           learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net(X_train.shape[1])
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k

我们使用一组未经调优的超参数并计算交叉验证误差,后续可以改动这些超参数来尽可能减小平均测试误差。

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))

输出:

fold 0, train rmse 0.170585, valid rmse 0.156860
fold 1, train rmse 0.162552, valid rmse 0.190944
fold 2, train rmse 0.164199, valid rmse 0.168767
fold 3, train rmse 0.168698, valid rmse 0.154873
fold 4, train rmse 0.163213, valid rmse 0.183080
5-fold validation: avg train rmse 0.165849, avg valid rmse 0.170905

有时候你会发现一组参数的训练误差可以达到很低,但是在K KK折交叉验证上的误差可能反而较高。这种现象很可能是由过拟合造成的。因此,当训练误差降低时,我们要观察K KK折交叉验证上的误差是否也相应降低。

5 预测并保存结果

下面定义预测函数。在预测之前,我们会使用完整的训练数据集来重新训练模型,并将预测结果存成提交所需要的格式。

def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net(train_features.shape[1])
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    preds = net(test_features).detach().numpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('./submission.csv', index=False)

设计好模型并调好超参数之后,下一步就是对测试数据集上的房屋样本做价格预测。

train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)

输出:

train rmse 0.162085

总结

  • 通常需要对真实数据做预处理。
  • 可以使用K KK折交叉验证来选择模型并调节超参数。


相关文章
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
蒋星熠Jaxonic,深度学习探索者。本文深度对比TensorFlow与PyTorch架构、性能、生态及应用场景,剖析技术选型关键,助力开发者在二进制星河中驾驭AI未来。
777 13
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
398 9
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
362 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
9月前
|
机器学习/深度学习 监控 算法
利用PyTorch处理个人数据集
如此看来,整个处理个人数据集的过程就像进行一场球赛。你设立球场,安排队员,由教练训练,最后你可以看到他们的表现。不断地学习,不断地调整,你的模型也会越来越厉害。 当然,这个过程看似简单,但在实际操作时可能会奇怪各种问题。需要你在实践中不断摸索,不断学习。可是不要怕,只要你热爱,不怕困难,你一定能驯服你的数据,让他们为你所用!
181 35
|
11月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
994 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
5月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
412 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
4月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
262 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现

推荐镜像

更多