Python中的深度学习小秘籍:从零开始搭建神经网络

简介: 6月更文挑战第8天

如何在Python中使用Keras和PyTorch这两个流行的深度学习库来创建基础的神经网络。我们将通过一个简单的图像分类任务,一步步地搭建和训练一个神经网络模型。

深度学习是机器学习的一个分支,它通过构建多层的神经网络来学习数据的复杂模式。Python有许多库可以帮助我们实现深度学习模型,其中最流行的是Keras和PyTorch。本文将带你从零开始,使用这两个库来搭建一个基础的神经网络,并用于简单的图像分类任务。

Keras
Keras是一个高层神经网络API,它能够以TensorFlow、CNTK或Theano作为后端运行。Keras的目的是让深度学习模型的开发变得简单快速。

首先,我们需要安装TensorFlow,然后安装Keras。安装完成后,我们来创建一个简单的全连接神经网络模型:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

# 定义模型
model = Sequential()

# 添加输入层和隐藏层
model.add(Flatten(input_shape=(28, 28)))  # 假设我们处理28x28的图像
model.add(Dense(128, activation='relu'))   # 添加一个有128个神经元的隐藏层,使用ReLU激活函数

# 添加输出层
model.add(Dense(10, activation='softmax'))  # 假设我们进行10分类,输出10个概率值

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 打印模型结构
model.summary()

我们需要准备数据并训练模型:

# 假设我们已经有了训练数据和测试数据
# x_train和y_train是训练数据和标签,x_test和y_test是测试数据和标签

# 训练模型
model.fit(x_train, y_train, epochs=5)

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)

PyTorch
PyTorch是一个开源的机器学习库,它由Facebook的人工智能研究团队开发。PyTorch提供了灵活的动态计算图,使得模型的构建和调试更加直观。

首先,我们需要安装PyTorch。安装完成后,我们来创建一个简单的全连接神经网络模型:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义模型
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(28*28, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 28*28)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
model = SimpleNN()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 打印模型结构
print(model)

# 训练模型
for epoch in range(5):
    for i, (inputs, targets) in enumerate(train_loader):
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print(f'Epoch [{epoch+1}/5], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')

# 评估模型
with torch.no_grad
相关文章
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
15 9
|
1天前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
23 7
|
22小时前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python实现深度学习模型:文本生成与自然语言处理
【7月更文挑战第14天】 使用Python实现深度学习模型:文本生成与自然语言处理
25 12
|
2天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:图像风格迁移与生成
【7月更文挑战第13天】 使用Python实现深度学习模型:图像风格迁移与生成
9 2
|
3天前
|
机器学习/深度学习 安全 TensorFlow
使用Python实现深度学习模型:模型安全与防御
【7月更文挑战第12天】 使用Python实现深度学习模型:模型安全与防御
9 1
|
1天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
8 0
|
1天前
|
机器学习/深度学习 TensorFlow API
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
9 0
|
1天前
|
网络协议 安全 Python
我们将使用Python的内置库`http.server`来创建一个简单的Web服务器。虽然这个示例相对简单,但我们可以围绕它展开许多讨论,包括HTTP协议、网络编程、异常处理、多线程等。
我们将使用Python的内置库`http.server`来创建一个简单的Web服务器。虽然这个示例相对简单,但我们可以围绕它展开许多讨论,包括HTTP协议、网络编程、异常处理、多线程等。
5 0
|
1天前
|
网络协议 Python
在Python中,我们使用`socket`模块来进行网络通信。首先,我们需要导入这个模块。
在Python中,我们使用`socket`模块来进行网络通信。首先,我们需要导入这个模块。
4 0
|
移动开发 网络协议 Linux
Python网络编程(socketserver、TFTP云盘、HTTPServer服务器模型)
Python网络编程 Python小项目 Python网盘 Python HTTP请求服务端
2129 0