皇后之战:揭秘N皇后问题的多维解法与智慧【python 力扣52题】

简介: 皇后之战:揭秘N皇后问题的多维解法与智慧【python 力扣52题】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个整数 n,返回 n×n 棋盘上的 N 皇后问题的不同解决方案的数量。

每一种解法包含一个明确的 n×n 棋盘上的皇后放置方式,其中 'Q' 代表一个皇后,而 '.' 代表空位。每个皇后都必须满足不能与其他皇后在同一行、同一列或同一对角线上。

输入格式
  • n:一个整数,表示棋盘的大小。
输出格式
  • 返回所有独特的 n 皇后问题的解决方案数量。

示例

示例 1

输入: n = 4
输出: 2
示例 2
输入: n = 1
输出: 1

注意

LeetCode题目51 "N皇后"与题目52 "N皇后II"虽然都是基于经典的N皇后问题,但两者的主要区别在于输出的需求不同:

N皇后 (题目 51)

  • 目标:找出所有可能的N皇后解决方案的具体棋盘布局。
  • 输出:返回所有解决方案,每个解决方案都详细展示了皇后的具体摆放位置。每个解决方案是一个包含n个字符串的列表,每个字符串长度为n,表示棋盘的一行,其中’Q’表示皇后,'.'表示空位。
  • 解法关注点:除了求解算法的有效性外,还需要关注如何构造并展示完整的棋盘布局。

N皇后 II (题目 52)

  • 目标:仅计算N皇后问题的不同解决方案数量。
  • 输出:返回解决方案的数量,而不是具体的棋盘布局。
  • 解法关注点:主要关注于优化算法的效率以快速计算出解决方案的总数,而不需要构造棋盘的具体布局。
    解法对比
    尽管两个问题在解法上可能使用类似的技术(如回溯法),51题需要更多的空间和逻辑来存储和展示所有可能的棋盘配置,而52题则更注重于计数优化,可能会使用更加精简的数据结构(如位运算)来加速计数过程。

方法一:回溯算法

解题步骤
  1. 初始化变量:创建一个用于存储当前行皇后位置的列表。
  2. 定义回溯函数:递归定义函数以尝试每一行的每个位置。
  3. 合法性检查:检查当前位置放置皇后是否合法,即检查列和两个方向的对角线。
  4. 递归与计数:递归地放置下一个皇后,如果完成一种有效布局则增加计数。
完整的规范代码
def totalNQueens(n):
    """
    计算 n 皇后问题的解决方案总数
    :param n: int, 棋盘大小
    :return: int, 解决方案总数
    """
    def backtrack(row, diagonals, anti_diagonals, cols):
        if row == n:
            nonlocal count
            count += 1
            return
        
        for col in range(n):
            curr_diagonal = row - col
            curr_anti_diagonal = row + col
            
            if (col in cols or curr_diagonal in diagonals or curr_anti_diagonal in anti_diagonals):
                continue
            
            cols.add(col)
            diagonals.add(curr_diagonal)
            anti_diagonals.add(curr_anti_diagonal)
            
            backtrack(row + 1, diagonals, anti_diagonals, cols)
            
            cols.remove(col)
            diagonals.remove(curr_diagonal)
            anti_diagonals.remove(curr_anti_diagonal)
    count = 0
    backtrack(0, set(), set(), set())
    return count
# 示例调用
print(totalNQueens(4))  # 输出: 2
算法分析
  • 时间复杂度:(O(n!)),尽管有剪枝,每层递归的选择数接近 n
  • 空间复杂度:(O(n)),递归栈深度加用于存储状态的空间。

方法二:位运算优化的回溯算法

解题步骤
  1. 位运算优化:使用位运算代替集合操作,提高效率。
  2. 定义位运算回溯函数:使用位掩码表示列和对角线的占用状态,通过位运算快速检查和修改状态。
  3. 递归与计数:递归放置皇后,完成布局时增加解决方案计数。
完整的规范代码
def totalNQueens(n):
    """
    计算 n 皇后问题的解决方案总数,使用位运算进行优化
    :param n: int, 棋盘大小
    :return: int, 解决方案总数
    """
    def solve(row, hills, next_row, dales):
        if row == n:
            nonlocal count
            count += 1
            return
        
        free_columns = columns & ~(hills | next_row | dales)
        while free_columns:
            curr_column = -free_columns & free_columns
            solve(row + 
1, (hills | curr_column) << 1, next_row | curr_column, (dales | curr_column) >> 1)
            free_columns &= free_columns - 1
    columns = (1 << n) - 1
    count = 0
    solve(0, 0, 0, 0)
    return count
# 示例调用
print(totalNQueens(4))  # 输出: 2
算法分析
  • 时间复杂度:(O(n!)),位运算显著提高了效率,但最坏情况下仍需尝试所有可能。
  • 空间复杂度:(O(n)),递归深度决定了空间复杂度,虽然使用位运算减少了空间占用。

方法三:迭代回溯

解题步骤
  1. 使用栈模拟递归:使用栈来模拟递归过程,避免函数调用的开销。
  2. 迭代处理:在迭代中管理棋盘状态和递归变量,以模拟递归调用栈的行为。
完整的规范代码
def totalNQueens(n):
    """
    使用迭代回溯解决 n 皇后问题
    :param n: int, 棋盘大小
    :return: int, 解决方案总数
    """
    stack = [(0, 0, 0, 0)]  # (row, hills, next_row, dales)
    count = 0
    while stack:
        row, hills, next_row, dales = stack.pop()
        if row == n:
            count += 1
            continue
        
        free_columns = ((1 << n) - 1) & ~(hills | next_row | dales)
        while free_columns:
            curr_column = -free_columns & free_columns
            stack.append((row + 1, (hills | curr_column) << 1, next_row | curr_column, (dales | curr_column) >> 1))
            free_columns &= free_columns - 1
    return count
# 示例调用
print(totalNQueens(4))  # 输出: 2
算法分析
  • 时间复杂度:(O(n!)),迭代的方式减少了递归调用开销,但仍然需要尝试所有可能的放置方式。
  • 空间复杂度:(O(n)),虽然使用栈来模拟递归,但空间复杂度与递归方法相当。

不同算法的优劣势对比

特征 方法一: 回溯算法 方法二: 位运算优化回溯 方法三: 迭代回溯
时间复杂度 (O(n!)) (O(n!)) (O(n!))
空间复杂度 (O(n)) (O(n)) (O(n))
优势 - 易于理解和实现 - 空间效率高 - 避免递归调用开销
劣势 - 空间消耗较大 - 理解和实现较为复杂 - 状态维护较为复杂

应用示例

科学研究

N皇后问题常用于算法研究和教学,特别是在探讨组合数学、算法优化、复杂度分析等领域。此问题的不同解决策略可用于教授递归、回溯及其优化。

算法竞赛

在算法竞赛中,N皇后问题是经典问题,经常出现在各类比

赛和面试中,作为测试程序员解决复杂问题能力的一种方式。

通过以上方法和示例,可以深入理解和掌握N皇后问题的多种解决方案及其应用场景。这些技术不仅限于此问题,还可广泛应用于其他需要递归和回溯解决的问题中。


欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
4月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
63 6
|
4月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
125 2
|
4月前
|
算法 Java
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
57 6
|
4月前
|
索引 Python
【Leetcode刷题Python】从列表list中创建一颗二叉树
本文介绍了如何使用Python递归函数从列表中创建二叉树,其中每个节点的左右子节点索引分别是当前节点索引的2倍加1和2倍加2。
72 7
|
4月前
|
算法 Python
【Leetcode刷题Python】 LeetCode 2038. 如果相邻两个颜色均相同则删除当前颜色
本文介绍了LeetCode 2038题的解法,题目要求在一个由'A'和'B'组成的字符串中,按照特定规则轮流删除颜色片段,判断Alice是否能够获胜,并提供了Python的实现代码。
58 3
|
4月前
|
算法 Python
【Leetcode刷题Python】剑指 Offer 33. 二叉搜索树的后序遍历序列
本文提供了一种Python算法,用以判断给定整数数组是否为某二叉搜索树的后序遍历结果,通过识别根节点并递归验证左右子树的值是否满足二叉搜索树的性质。
26 3
|
4月前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
54 1
|
4月前
|
存储 算法 Java
LeetCode经典算法题:预测赢家+香槟塔java解法
LeetCode经典算法题:预测赢家+香槟塔java解法
66 1
|
4月前
|
Python
【Leetcode刷题Python】50. Pow(x, n)
本文介绍了LeetCode第50题"Pow(x, n)"的解法,题目要求实现计算x的n次幂的函数,文章提供了递归分治法的详细解析和Python实现代码。
30 1
|
4月前
|
Python
【Leetcode刷题Python】LeetCode 478. 在圆内随机生成点
本文介绍了LeetCode 478题的解法,题目要求在给定圆的半径和圆心位置的情况下实现在圆内均匀随机生成点的功能,并提供了Python的实现代码。
35 1