LeetCode经典算法题:预测赢家+香槟塔java解法

简介: LeetCode经典算法题:预测赢家+香槟塔java解法

1 预测赢家

题目描述

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。

每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

解题思路与代码

给定一个表示分数的数组,预测玩家1是否会成为赢家。可以假设每个玩家的玩法都会使他的分数最大化。

两个值的时候必然是取较大的,三个值,取一个能使自己分数和最大的,后手必然留较小的给先手,因此先手选一个值加上该较小值最大化

 static int maxScore(int[] nums, int l, int r) {
        //剩下一个值,只能取该值
        if (l == r) {
            return nums[l];
        }
        int selectLeft =0, selectRight=nums.length-1;
        //剩下大于两个值,先手选一边(使自己得分最高的一边),后手则选使对手得分最低的一边
        if ((r - l) >= 2) {
            selectLeft = nums[l] +Math.min(maxScore(nums, l+2, r),maxScore(nums,
                    l+1, r-1));
            selectRight = nums[r] +Math.min(maxScore(nums, l+1, r-1),maxScore(nums,
                    l, r-2));
        }
        //剩下两个值,取较大的
        if ((r - l) == 1) {
            selectLeft = nums[l];
            selectRight = nums[r];
        }
        return Math.max(selectLeft, selectRight);
    }
    int getScore(int[] nums, int start, int end) {
        int selectLeft, selectRight;
        int gap = end - start;
        if (gap == 0) {
            return nums[start];
        } else if (gap == 1) { // 此时直接取左右的值就可以
            selectLeft = nums[start];
            selectRight = nums[end];
        } else if (gap >= 2) { // 如果gap大于2,递归计算selectLeft和selectRight
            // 计算的过程为什么用min,因为要按照对手也是最聪明的来计算。
            int num = getScore(nums, start + 1, end - 1);
            selectLeft = nums[start] + min(getScore(nums, start + 2, end), num);
            selectRight = nums[end] + min(num, getScore(nums, start, end - 2));
        }
        return max(selectLeft, selectRight);
    }
    bool PredictTheWinner(int[] nums) {
        int sum = 0;
        for (int i : nums) {
            sum += i;
            int player1 = getScore(nums, 0, nums.size() - 1);
            int player2 = sum - player1;
            // 如果最终两个玩家的分数相等,那么玩家 1 仍为赢家,所以是大于等于。
            return player1 >= player2;
            //return getScore(nums, 0, nums.size() - 1) >=0 ;
        }
        //差值
        int getScore(int[] nums, int start, int end) {
            if (end == start) {
                return nums[start];
            }
            int selectLeft = nums[start] - getScore(nums, start + 1, end);
            int selectRight = nums[end] - getScore(nums, start, end - 1);
            return max(selectLeft, selectRight);
        }      


动态规划:使用二维数组存储差值

    public boolean PredictTheWinner(int[] nums) {
        int length = nums.length;
        int[][] dp = new int[length][length];
        for (int i = 0; i < length; i++) {
            dp[i][i] = nums[i];
        }
        for (int i = length - 2; i >= 0; i--) {
            for (int j = i + 1; j < length; j++) {
                //j = i +1 因此可以优化为一维数组,下标位置相同才有值,据此推导其他的值
                //Math.max(nums[i] - dp[j][j], nums[j] - dp[j - 1][j - 1]);
                dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
            }
        }
        return dp[0][length - 1] >= 0;
    }

2 香槟塔

题目描述

我们把玻璃杯摆成金字塔的形状,其中第一层有1个玻璃杯,第二层有2个,依次类推到第100层,每个玻璃杯(250ml)将盛有香槟。

从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)


例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟现在当倾倒了非负整数杯香槟后,返回第 i 行 j 个玻璃杯所盛放的香槟占玻璃杯容积的比例(i 和 j都从0开始)。

解题思路与代码

    public double champagneTower(int poured, int query_row, int query_glass) {
        double[][] A = new double[102][102];
        A[0][0] = (double) poured;
        for (int r = 0; r <= query_row; ++r) {
            for (int c = 0; c <= r; ++c) {
                double q = (A[r][c] - 1.0) / 2.0;
                if (q > 0) {
                    A[r+1][c] += q;
                    A[r+1][c+1] += q;
                }
            }
        }
        return Math.min(1, A[query_row][query_glass]);
    } 
][c+1] += q;
                }
            }
        }
        return Math.min(1, A[query_row][query_glass]);
    } 

打家劫舍

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

输入:[1,2,3,1] 输出:4

输入:[2,7,9,3,1] 输出:12

解题思路与代码

    static int maxMoney(int[] nums,int index){
        if (nums == null || index < 0) {
            return 0;
        }
        if (index == 0) {
            return nums[0];
        }
        return Math.max(maxMoney(nums,index - 2) + nums[index], maxMoney(nums,index
                - 1));
    }
    static int maxMoney(int[] nums){
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }


        /*
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
        */

        int first = nums[0], second = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }


如果房子首尾相连:
    public int rob(int[] nums) {
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        } else if (length == 2) {
            return Math.max(nums[0], nums[1]);
        }
        return Math.max(robRange(nums, 0, length - 2), robRange(nums, 1, length -
                1));
    }
    public int robRange(int[] nums, int start, int end) {
        int first = nums[start], second = Math.max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
    public int rob(TreeNode root) {
        int[] rootStatus = dfs(root);
        return Math.max(rootStatus[0], rootStatus[1]);
    }
    public int[] dfs(TreeNode node) {
        if (node == null) {
            return new int[]{0, 0};
        }
        int[] l = dfs(node.left);
        int[] r = dfs(node.right);
        int selected = node.val + l[1] + r[1];
        int notSelected = Math.max(l[0], l[1]) + Math.max(r[0], r[1]);
        return new int[]{selected, notSelected};
    }

目录
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
55 3
|
18天前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
|
2月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
49 3
|
4月前
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
5月前
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
9天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
9天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。