LeetCode经典算法题:预测赢家+香槟塔java解法

简介: LeetCode经典算法题:预测赢家+香槟塔java解法

1 预测赢家

题目描述

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。

每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

解题思路与代码

给定一个表示分数的数组,预测玩家1是否会成为赢家。可以假设每个玩家的玩法都会使他的分数最大化。

两个值的时候必然是取较大的,三个值,取一个能使自己分数和最大的,后手必然留较小的给先手,因此先手选一个值加上该较小值最大化

 static int maxScore(int[] nums, int l, int r) {
        //剩下一个值,只能取该值
        if (l == r) {
            return nums[l];
        }
        int selectLeft =0, selectRight=nums.length-1;
        //剩下大于两个值,先手选一边(使自己得分最高的一边),后手则选使对手得分最低的一边
        if ((r - l) >= 2) {
            selectLeft = nums[l] +Math.min(maxScore(nums, l+2, r),maxScore(nums,
                    l+1, r-1));
            selectRight = nums[r] +Math.min(maxScore(nums, l+1, r-1),maxScore(nums,
                    l, r-2));
        }
        //剩下两个值,取较大的
        if ((r - l) == 1) {
            selectLeft = nums[l];
            selectRight = nums[r];
        }
        return Math.max(selectLeft, selectRight);
    }
    int getScore(int[] nums, int start, int end) {
        int selectLeft, selectRight;
        int gap = end - start;
        if (gap == 0) {
            return nums[start];
        } else if (gap == 1) { // 此时直接取左右的值就可以
            selectLeft = nums[start];
            selectRight = nums[end];
        } else if (gap >= 2) { // 如果gap大于2,递归计算selectLeft和selectRight
            // 计算的过程为什么用min,因为要按照对手也是最聪明的来计算。
            int num = getScore(nums, start + 1, end - 1);
            selectLeft = nums[start] + min(getScore(nums, start + 2, end), num);
            selectRight = nums[end] + min(num, getScore(nums, start, end - 2));
        }
        return max(selectLeft, selectRight);
    }
    bool PredictTheWinner(int[] nums) {
        int sum = 0;
        for (int i : nums) {
            sum += i;
            int player1 = getScore(nums, 0, nums.size() - 1);
            int player2 = sum - player1;
            // 如果最终两个玩家的分数相等,那么玩家 1 仍为赢家,所以是大于等于。
            return player1 >= player2;
            //return getScore(nums, 0, nums.size() - 1) >=0 ;
        }
        //差值
        int getScore(int[] nums, int start, int end) {
            if (end == start) {
                return nums[start];
            }
            int selectLeft = nums[start] - getScore(nums, start + 1, end);
            int selectRight = nums[end] - getScore(nums, start, end - 1);
            return max(selectLeft, selectRight);
        }      


动态规划:使用二维数组存储差值

    public boolean PredictTheWinner(int[] nums) {
        int length = nums.length;
        int[][] dp = new int[length][length];
        for (int i = 0; i < length; i++) {
            dp[i][i] = nums[i];
        }
        for (int i = length - 2; i >= 0; i--) {
            for (int j = i + 1; j < length; j++) {
                //j = i +1 因此可以优化为一维数组,下标位置相同才有值,据此推导其他的值
                //Math.max(nums[i] - dp[j][j], nums[j] - dp[j - 1][j - 1]);
                dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
            }
        }
        return dp[0][length - 1] >= 0;
    }

2 香槟塔

题目描述

我们把玻璃杯摆成金字塔的形状,其中第一层有1个玻璃杯,第二层有2个,依次类推到第100层,每个玻璃杯(250ml)将盛有香槟。

从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)


例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟现在当倾倒了非负整数杯香槟后,返回第 i 行 j 个玻璃杯所盛放的香槟占玻璃杯容积的比例(i 和 j都从0开始)。

解题思路与代码

    public double champagneTower(int poured, int query_row, int query_glass) {
        double[][] A = new double[102][102];
        A[0][0] = (double) poured;
        for (int r = 0; r <= query_row; ++r) {
            for (int c = 0; c <= r; ++c) {
                double q = (A[r][c] - 1.0) / 2.0;
                if (q > 0) {
                    A[r+1][c] += q;
                    A[r+1][c+1] += q;
                }
            }
        }
        return Math.min(1, A[query_row][query_glass]);
    } 
][c+1] += q;
                }
            }
        }
        return Math.min(1, A[query_row][query_glass]);
    } 

打家劫舍

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

输入:[1,2,3,1] 输出:4

输入:[2,7,9,3,1] 输出:12

解题思路与代码

    static int maxMoney(int[] nums,int index){
        if (nums == null || index < 0) {
            return 0;
        }
        if (index == 0) {
            return nums[0];
        }
        return Math.max(maxMoney(nums,index - 2) + nums[index], maxMoney(nums,index
                - 1));
    }
    static int maxMoney(int[] nums){
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }


        /*
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
        */

        int first = nums[0], second = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }


如果房子首尾相连:
    public int rob(int[] nums) {
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        } else if (length == 2) {
            return Math.max(nums[0], nums[1]);
        }
        return Math.max(robRange(nums, 0, length - 2), robRange(nums, 1, length -
                1));
    }
    public int robRange(int[] nums, int start, int end) {
        int first = nums[start], second = Math.max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
    public int rob(TreeNode root) {
        int[] rootStatus = dfs(root);
        return Math.max(rootStatus[0], rootStatus[1]);
    }
    public int[] dfs(TreeNode node) {
        if (node == null) {
            return new int[]{0, 0};
        }
        int[] l = dfs(node.left);
        int[] r = dfs(node.right);
        int selected = node.val + l[1] + r[1];
        int notSelected = Math.max(l[0], l[1]) + Math.max(r[0], r[1]);
        return new int[]{selected, notSelected};
    }

目录
相关文章
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
100 3
|
4月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
182 0
|
3月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
329 58
|
2月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
|
2月前
|
存储 监控 算法
企业上网监控场景下布隆过滤器的 Java 算法构建及其性能优化研究
布隆过滤器是一种高效的数据结构,广泛应用于企业上网监控系统中,用于快速判断员工访问的网址是否为违规站点。相比传统哈希表,它具有更低的内存占用和更快的查询速度,支持实时拦截、动态更新和资源压缩,有效提升系统性能并降低成本。
58 0
|
2月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
129 0
|
2月前
|
Java API 调度
从阻塞到畅通:Java虚拟线程开启并发新纪元
从阻塞到畅通:Java虚拟线程开启并发新纪元
284 83
|
3月前
|
存储 SQL 安全
Java 无锁方式实现高性能线程实战操作指南
本文深入探讨了现代高并发Java应用中单例模式的实现方式,分析了传统单例(如DCL)的局限性,并提出了多种无锁实现方案。包括基于ThreadLocal的延迟初始化、VarHandle原子操作、Record不可变对象、响应式编程(Reactor)以及CDI依赖注入等实现方式。每种方案均附有代码示例及适用场景,同时通过JMH性能测试对比各实现的优劣。最后,结合实际案例设计了一个高性能配置中心,展示了无锁单例在实际开发中的应用。总结中提出根据场景选择合适的实现方式,并遵循现代单例设计原则以优化性能和安全性。文中还提供了代码获取链接,便于读者实践与学习。
94 0

热门文章

最新文章