CVPR 2024:借助神经结构光,浙大实现动态三维现象的实时采集重建

简介: 【5月更文挑战第14天】

在CVPR 2024会议上,来自浙江大学的研究人员提出了一种名为“Neural Structured Illumination”的创新框架,用于实时采集和重建高质量的动态三维现象。该框架的核心是一个深度神经网络,包括一个编码器,它直接将结构光映射到采集过程中,一个解码器,它从单像素测量中预测出1D密度分布,以及一个聚合模块,它将每个相机预测的密度组合成一个单一的体积。

通过这种方式,该框架能够实现物理采集和计算重建的自动和联合优化,并灵活地适应不同的硬件配置。在实验中,研究人员使用了一个轻量级的设置,包括一个现成的投影仪和一个或多个相机,实现了每秒40个体积的采集和重建性能,空间分辨率为1283。

与最先进的技术相比,该框架在真实和合成实验中表现出色,并评估了各种因素对管道的影响。这种方法在科学研究领域具有广泛的应用前景,如飞机设计、车辆制造、天气预报和现代显微镜等。

然而,该框架也存在一些局限性。首先,它依赖于结构光的优化,这可能需要额外的计算资源和时间。其次,尽管该框架在实验中表现出色,但在实际应用中可能需要进一步的优化和改进。

论文链接:https://svbrdf.github.io/publications/realtimedynamic/realtimedynamic.pdf

目录
打赏
0
2
2
0
389
分享
相关文章
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
VideoVAE+ 是香港科技大学推出的先进跨模态视频变分自编码器,通过时空分离压缩机制和文本指导,实现了高效视频压缩与精准重建。
99 7
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
《探索C++在3D重建中的算法与技术要点》
3D重建是计算机视觉的重要技术,广泛应用于多个行业。C++因其高效性和对底层硬件的良好控制,成为实现3D重建算法的首选语言。本文介绍了多视图立体视觉、立体匹配、点云处理与重建、网格重建与优化、纹理映射及CUDA加速等关键技术,详细阐述了各算法的原理和C++实现要点。
101 18
FasterX实时目标检测 | 依托NanoDet思想,使用辅助Head进一步提升YOLOX性能(二)
FasterX实时目标检测 | 依托NanoDet思想,使用辅助Head进一步提升YOLOX性能(二)
304 0
FasterX实时目标检测 | 依托NanoDet思想,使用辅助Head进一步提升YOLOX性能(一)
FasterX实时目标检测 | 依托NanoDet思想,使用辅助Head进一步提升YOLOX性能(一)
186 0
图像大面积缺失,也能逼真修复,新模型CM-GAN兼顾全局结构和纹理细节(2)
图像大面积缺失,也能逼真修复,新模型CM-GAN兼顾全局结构和纹理细节
353 0
CVPR2023 | 无需动态区域分割!多帧深度估计新进展:跨线索注意力机制提升动态区域精度
CVPR2023 | 无需动态区域分割!多帧深度估计新进展:跨线索注意力机制提升动态区域精度
400 0
阿里团队新作 | AFFormer:利用图像频率信息构建轻量化Transformer语义分割架构
阿里团队新作 | AFFormer:利用图像频率信息构建轻量化Transformer语义分割架构
636 0

热门文章

最新文章