请解释Python中的线性回归分析以及如何使用Sklearn库实现它。

简介: 【4月更文挑战第22天】使用Python的Sklearn库进行线性回归分析,包括7个步骤:导入库、准备数据、划分训练测试集、创建模型、训练、预测和评估。示例代码创建了一个简单的数据集,应用线性回归模型,计算了Mean Squared Error和R² Score,并展示了预测结果与实际值的可视化对比。

线性回归是一种统计学上的预测分析方法,用于建立自变量(特征)和因变量(目标值)之间的线性关系模型。在Python中,可以使用Sklearn库实现线性回归分析。

以下是使用Sklearn库实现线性回归的步骤:

  1. 导入所需的库和模块。
  2. 准备数据集。
  3. 划分训练集和测试集。
  4. 创建线性回归模型并设置参数。
  5. 训练模型并进行预测。
  6. 评估模型性能。
  7. 可视化结果。

以下是具体的代码实现:

# 导入所需的库和模块
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# 准备数据集
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y = np.array([2, 4, 6, 8, 10])

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型并设置参数
lr = LinearRegression()

# 训练模型并进行预测
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)

# 评估模型性能
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R2 Score:", r2)

# 可视化结果
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', label='Predicted')
plt.legend()
plt.show()

在这个例子中,我们首先导入了所需的库和模块,然后创建了一个简单的数据集。接下来,我们将数据集划分为训练集和测试集,然后创建了一个线性回归模型。我们使用训练集对模型进行训练,并使用测试集进行预测。最后,我们评估了模型的性能并可视化了结果。

相关文章
|
22天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
115 70
|
15天前
|
XML JSON 数据库
Python的标准库
Python的标准库
135 77
|
24天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
128 68
|
20天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
97 36
|
14天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
61 15
|
18天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
81 18
|
1月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
87 4
数据分析的 10 个最佳 Python 库
|
16天前
|
XML JSON 数据库
Python的标准库
Python的标准库
44 11
|
29天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
109 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
16天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
58 8