PyTorch小技巧:使用Hook可视化网络层激活(各层输出)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。

这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。

我们先安装必要的库:

 pip install torch torchvision matplotlib

加载CIFAR-10数据集并可视化一些图像。这有助于理解模型处理的输入。

 importtorchvision
 importtorchvision.transformsastransforms
 importmatplotlib.pyplotasplt

 # Transformations for the images
 transform=transforms.Compose([
     transforms.Resize(256),
     transforms.CenterCrop(224),
     transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
 ])

 # Load CIFAR-10 dataset
 trainset=torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
 trainloader=torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)

 # Function to show images
 defimshow(img):
     img=img.numpy().transpose((1, 2, 0))
     mean=np.array([0.485, 0.456, 0.406])
     std=np.array([0.229, 0.224, 0.225])
     img=std*img+mean  # unnormalize
     plt.imshow(img)
     plt.show()

 # Get some images
 dataiter=iter(trainloader)
 images, labels=next(dataiter)

 # Display images
 imshow(torchvision.utils.make_grid(images))

看着很模糊的原因是我们使用的CIFAR-10图像32x32的,很小 。因为对于小图像,处理速度很快,所以CIFAR-10称为研究的首选。

然后我们加载一个预训练的ResNet模型,并在特定的层上设置钩子函数,以在向前传递期间捕获激活。

 import torch
 from torchvision.models import resnet18

 # Load pretrained ResNet18
 model = resnet18(pretrained=True)
 model.eval()  # Set the model to evaluation mode

 # Hook setup
 activations = {}
 def get_activation(name):
     def hook(model, input, output):
         activations[name] = output.detach()
     return hook

 # Register hooks
 model.layer1[0].conv1.register_forward_hook(get_activation('layer1_0_conv1'))
 model.layer4[0].conv1.register_forward_hook(get_activation('layer4_0_conv1'))

这样,在通过模型处理图像时就能捕获到激活。

 # Run the model
 with torch.no_grad():
     output = model(images)

通过上面钩子函数我们获得了激活下面就可以进行可视化

 # Visualization function for activations
 def plot_activations(layer, num_cols=4, num_activations=16):
     num_kernels = layer.shape[1]
     fig, axes = plt.subplots(nrows=(num_activations + num_cols - 1) // num_cols, ncols=num_cols, figsize=(12, 12))
     for i, ax in enumerate(axes.flat):
         if i < num_kernels:
             ax.imshow(layer[0, i].cpu().numpy(), cmap='twilight')
             ax.axis('off')
     plt.tight_layout()
     plt.show()
 # Display a subset of activations
 plot_activations(activations['layer1_0_conv1'], num_cols=4, num_activations=16)

结果如下:

 plot_activations(activations['layer4_0_conv1'], num_cols=4, num_activations=16)

PyTorch的钩子函数(hooks)是一种非常有用的特性,它们允许你在训练的前向传播和反向传播过程中插入自定义操作。这对于调试、修改梯度或者理解网络的内部运作非常有帮助。

利用 PyTorch 钩子函数来可视化网络中的激活是一种很好的方式,尤其是想要理解不同层如何响应不同输入的情况下。在这个过程中,我们可以捕捉到网络各层的输出,并将其可视化以获得直观的理解。

可视化激活有助于理解卷积神经网络中的各个层如何响应输入图像中的不同特征。通过可视化不同的层,可以评估早期层是否捕获边缘和纹理等基本特征,而较深的层是否捕获更复杂的特征。这些知识对于诊断问题、调整层架构和改进整体模型性能是非常宝贵的。

https://avoid.overfit.cn/post/c63b9b1130fe425ea5b7d0bedf209b2e

目录
相关文章
|
3月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
|
3月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
145 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
基于Pytorch 在昇腾上实现GCN图神经网络
本文详细讲解了如何在昇腾平台上使用PyTorch实现图神经网络(GCN)对Cora数据集进行分类训练。内容涵盖GCN背景、模型特点、网络架构剖析及实战分析。GCN通过聚合邻居节点信息实现“卷积”操作,适用于非欧氏结构数据。文章以两层GCN模型为例,结合Cora数据集(2708篇科学出版物,1433个特征,7种类别),展示了从数据加载到模型训练的完整流程。实验在NPU上运行,设置200个epoch,最终测试准确率达0.8040,内存占用约167M。
基于Pytorch 在昇腾上实现GCN图神经网络
|
7月前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
307 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
|
10月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
506 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
7月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
基于Pytorch Gemotric在昇腾上实现GAT图神经网络
本实验基于昇腾平台,使用PyTorch实现图神经网络GAT(Graph Attention Networks)在Pubmed数据集上的分类任务。内容涵盖GAT网络的创新点分析、图注意力机制原理、多头注意力机制详解以及模型代码实战。实验通过两层GAT网络对Pubmed数据集进行训练,验证模型性能,并展示NPU上的内存使用情况。最终,模型在测试集上达到约36.60%的准确率。
|
7月前
|
算法 PyTorch 算法框架/工具
PyTorch 实现FCN网络用于图像语义分割
本文详细讲解了在昇腾平台上使用PyTorch实现FCN(Fully Convolutional Networks)网络在VOC2012数据集上的训练过程。内容涵盖FCN的创新点分析、网络架构解析、代码实现以及端到端训练流程。重点包括全卷积结构替换全连接层、多尺度特征融合、跳跃连接和反卷积操作等技术细节。通过定义VOCSegDataset类处理数据集,构建FCN8s模型并完成训练与测试。实验结果展示了模型在图像分割任务中的应用效果,同时提供了内存使用优化的参考。
|
7月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本实验基于PyTorch Geometric,在昇腾平台上实现GraphSAGE图神经网络,使用CiteSeer数据集进行分类训练。内容涵盖GraphSAGE的创新点、算法原理、网络架构及实战分析。GraphSAGE通过采样和聚合节点邻居特征,支持归纳式学习,适用于未见节点的表征生成。实验包括模型搭建、训练与验证,并在NPU上运行,最终测试准确率达0.665。
|
9月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
626 7
深入解析图神经网络注意力机制:数学原理与可视化实现

推荐镜像

更多