matlab用高斯曲线拟合模型分析疫情数据

简介: matlab用高斯曲线拟合模型分析疫情数据

本文用matlab分析疫情数据集。

数据源

我们检查解压缩的文件。包含:

  • data.csv -2020年全球病例每日水平数据
  • confirmed.csv-确诊病例的时间序列数据


地图上可视化


我们在地图上可视化已确诊病例的数量。我们首先加载纬度和经度变量。

opts = detectImportOptions(filenames(4), "TextType","string");

在此之前,我们需要稍微整理一下数据。现在,我们可以使用  groupsummary  将已确认的案例相加并平均经纬度来按地区汇总数据。



country = groupsummary(times_conf,"Country/Region",{'sum','mean'},vars(3:end));

输出中包含不必要的列,例如纬度和经度的总和。我们删除这些变量。

让我们使用  geobubble  可视化数据集中的第一个和最后一个日期数据。



for ii = [4, length(vars)]


times_conf_exChina.Category = categorical(repmat("<100",hmes_c

美国确诊病例



figure
t = tiledlayout("flow");
for ii = [5, length(vars)]


gb.BubbleColorList = [1,0,1;1,0,0];
gb.LegendVisible = "off";
gb.Title = "As of " + vars(ii);
gb.SizeLimits = [0,

 

可以看到它始于华盛顿,并在加利福尼亚和纽约爆发了大规模疫情。

按确诊病例排名地区

让我们使用covid_19比较按地区确认的病例数。日期时间格式中存在不一致之处,因此我们一开始会将其视为文本。



opts = detectImportOptions(filenames(3), "TextType","string","DatetimeType","text");

清理日期时间格式。


Data.nDate = regexprep(Data.Date,"\/20$","/2020");
Data.Date = datetime(Data.Date);

我们还需要标准化“地区”中的值。

Country_Region(Country_Region == "Iran (Islamic Republic of)") = "Iran";

让我们在“地区”级别汇总数据。



countryData = groupsummary(provData,{'ObservationDate','Country_Region'}, ...


"sum",{'Confirmed','Deaths','Recovered'});

countryData包含每日累积数据。我们只需要最新的数字。

 

按地区的增长

我们还可以检查这些地区病例的增长速度。



figure
plot(countryData.ObservationDate(countryData.Country_Region == labelsK(2)), ...
hold on
for ii = 3:length(labelsK)
plot(countryData.ObservationDate(countryData.Country_Region == labelsK(ii)), ...

 

尽管韩国显示出增长放缓的迹象,但它在其他地方正在加速发展。

按地区划分的新病例增长

我们可以通过减去两个日期之间已确认病例的累计数量来计算新病例的数量。




for ii = 1:length(labelsK)
country = provData(provData.Country_Region == labelsK(ii),:);


country = groupsummary(country,{'ObservationDate','Country_Region'}, ...


if labelsK(ii) ~= "Others"
nexttile

您可以看到,已经遏制住了疫情。

计算活跃病例。


for ii = 1:length(labelsK)
by_country{ii}.Active = by_country{ii}.Confirmed - by_country{ii}.Deaths -


figure

 

拟合曲线

有效案例的数量正在下降,曲线看起来大致为高斯曲线。我们可以拟合高斯模型并预测活动案例何时为零吗?

我使用  曲线拟合工具箱  进行高斯拟合。



ft = fittype("gauss1");


[fobj, gof] = fit(x,y,ft,opts);
gof
gof =
struct with fields:


sse: 4.4145e+08
rsquare: 0.9743
dfe: 47
adjrsquare: 0.9732
rmse: 3.0647e+03

让我们通过增加20天来将输出预测。

现在我们对结果进行绘制。

figure
area(ObservationDate,by_country{1}.Active)
hold on
plot(xdates,yhat,"lineWidth",2)

 

 

韩国

让我们来查看病例人数。

 

使用高斯模型无法获得合适的结果。


最受欢迎的见解

相关文章
|
20小时前
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
20小时前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
1月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
14天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
2月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
2月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
59 0
|
3月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。