matlab用高斯曲线拟合模型分析疫情数据

简介: matlab用高斯曲线拟合模型分析疫情数据

本文用matlab分析疫情数据集。

数据源

我们检查解压缩的文件。包含:

  • data.csv -2020年全球病例每日水平数据
  • confirmed.csv-确诊病例的时间序列数据


地图上可视化


我们在地图上可视化已确诊病例的数量。我们首先加载纬度和经度变量。

opts = detectImportOptions(filenames(4), "TextType","string");

在此之前,我们需要稍微整理一下数据。现在,我们可以使用  groupsummary  将已确认的案例相加并平均经纬度来按地区汇总数据。



country = groupsummary(times_conf,"Country/Region",{'sum','mean'},vars(3:end));

输出中包含不必要的列,例如纬度和经度的总和。我们删除这些变量。

让我们使用  geobubble  可视化数据集中的第一个和最后一个日期数据。



for ii = [4, length(vars)]


times_conf_exChina.Category = categorical(repmat("<100",hmes_c

美国确诊病例



figure
t = tiledlayout("flow");
for ii = [5, length(vars)]


gb.BubbleColorList = [1,0,1;1,0,0];
gb.LegendVisible = "off";
gb.Title = "As of " + vars(ii);
gb.SizeLimits = [0,

 

可以看到它始于华盛顿,并在加利福尼亚和纽约爆发了大规模疫情。

按确诊病例排名地区

让我们使用covid_19比较按地区确认的病例数。日期时间格式中存在不一致之处,因此我们一开始会将其视为文本。



opts = detectImportOptions(filenames(3), "TextType","string","DatetimeType","text");

清理日期时间格式。


Data.nDate = regexprep(Data.Date,"\/20$","/2020");
Data.Date = datetime(Data.Date);

我们还需要标准化“地区”中的值。

Country_Region(Country_Region == "Iran (Islamic Republic of)") = "Iran";

让我们在“地区”级别汇总数据。



countryData = groupsummary(provData,{'ObservationDate','Country_Region'}, ...


"sum",{'Confirmed','Deaths','Recovered'});

countryData包含每日累积数据。我们只需要最新的数字。

 

按地区的增长

我们还可以检查这些地区病例的增长速度。



figure
plot(countryData.ObservationDate(countryData.Country_Region == labelsK(2)), ...
hold on
for ii = 3:length(labelsK)
plot(countryData.ObservationDate(countryData.Country_Region == labelsK(ii)), ...

 

尽管韩国显示出增长放缓的迹象,但它在其他地方正在加速发展。

按地区划分的新病例增长

我们可以通过减去两个日期之间已确认病例的累计数量来计算新病例的数量。




for ii = 1:length(labelsK)
country = provData(provData.Country_Region == labelsK(ii),:);


country = groupsummary(country,{'ObservationDate','Country_Region'}, ...


if labelsK(ii) ~= "Others"
nexttile

您可以看到,已经遏制住了疫情。

计算活跃病例。


for ii = 1:length(labelsK)
by_country{ii}.Active = by_country{ii}.Confirmed - by_country{ii}.Deaths -


figure

 

拟合曲线

有效案例的数量正在下降,曲线看起来大致为高斯曲线。我们可以拟合高斯模型并预测活动案例何时为零吗?

我使用  曲线拟合工具箱  进行高斯拟合。



ft = fittype("gauss1");


[fobj, gof] = fit(x,y,ft,opts);
gof
gof =
struct with fields:


sse: 4.4145e+08
rsquare: 0.9743
dfe: 47
adjrsquare: 0.9732
rmse: 3.0647e+03

让我们通过增加20天来将输出预测。

现在我们对结果进行绘制。

figure
area(ObservationDate,by_country{1}.Active)
hold on
plot(xdates,yhat,"lineWidth",2)

 

 

韩国

让我们来查看病例人数。

 

使用高斯模型无法获得合适的结果。


最受欢迎的见解

相关文章
|
4月前
|
数据可视化 数据安全/隐私保护 C++
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
|
2月前
|
数据安全/隐私保护
地震波小波变换,matlab小波变换,时频域分析
地震波小波变换,matlab小波变换,时频域分析
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
3月前
|
算法 安全 数据安全/隐私保护
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
|
4月前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
167 14
|
4月前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
4月前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
5月前
|
数据可视化 数据挖掘 BI
MATLAB学习之旅:数据统计与分析
在MATLAB中,我们掌握了数据导入、处理及插值拟合等基础技能。接下来,我们将深入数据统计与分析领域,学习描述性统计量(如均值、标准差)、数据分布分析(如直方图、正态概率图)、数据排序与排名、数据匹配查找以及数据可视化(如箱线图、散点图)。这些工具帮助我们挖掘数据中的有价值信息,揭示数据的奥秘,为后续数据分析打下坚实基础。
|
4月前
|
算法 数据处理 数据安全/隐私保护
分别通过LS和RML进行模型参数辨识matlab仿真
本程序通过最小二乘法(LS)和递归最大似然估计(RML)进行模型参数辨识,并在MATLAB2022A中仿真。仿真输出包括参数辨识误差及收敛值。程序展示了两种方法的参数估计值及其误差收敛情况,适用于控制系统设计与分析。最小二乘法适合离线批量处理,而RML则适用于实时在线处理。核心代码实现了LS辨识,并绘制了参数估计值和误差变化图。
|
6月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。

热门文章

最新文章