【信号处理】基于CSSD 实现不连续信号的三次平滑附matlab代码

简介: 【信号处理】基于CSSD 实现不连续信号的三次平滑附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Smoothing splines are standard methods of nonparametric regression for obtaining smooth functions from noisy observations. But as splines are twice differentiable by construction, they cannot capture potential discontinuities in the underlying signal. The smoothing spline model can be augmented such that discontinuities at a priori unknown locations are incorporated. The augmented model results in a minimization problem with respect to discontinuity locations. The minimizing solution is a cubic smoothing spline with discontinuities (CSSD) which may serve as function estimator for discontinuous signals, as a changepoint detector, and as a tool for exploratory data analysis. However, these applications are hardly accessible at the moment because there is no efficient algorithm for computing a CSSD. In this paper, we propose an efficient algorithm that computes a global minimizer of the underlying problem. Its worst case complexity is quadratic in the number of data points. If the number of detected discontinuities scales linearly with the signal length, we observe linear growth of the runtime. By the proposed algorithm, a CSSD can be computed in reasonable time on standard hardware. Furthermore, we implement a strategy for automatic selection of the hyperparameters. Numerical examples demonstrate the applicability of a CSSD for the tasks mentioned above.

⛄ 部分代码

function output = cssd_cv(x, y, folds_cell, delta, startingPoint, varargin)%CSSD_CV K-Fold cross validation for cubic smoothing spline with discontinuities %%   cssd_cv(x, y, folds_cell, delt, xx, delta)  automatically determines% the model parameters p and gamma of a CSSD model based on minimization of % a K-fold cross validation score. % % Note: The minimization process uses standard derivative free% optimizers (simulated annealing and Nelder-Mead simplex downhill). So it% is not guaranteed that the result is a global minimum. % Trying different starting points often helps if the results with the default starting point % are unsatisfactory.%% Input% x: vector of data sites%% y: vector of same lenght as x or matrix where y(:,i) is a data vector at site x(i)%% folds_cell (optional): a cell array of index vectors corresponding to the% K folds (if [] the 5 folds are chosen randomly)% % startingPoint (optional): Starting point startingPoint = [p; gamma] for the optimizer% (default is [0.5; 1])%% delta: (optional) weights of the data sites. delta may be thought of as the% standard deviation of the at site x_i. Should have the same size as x.% - Note: The Matlab built in spline function csaps uses a different weight% convention (w). delta is related to Matlab's w by w = 1./delta.^2% - Note for vector-valued data: Weights are assumed to be identical over% vector-components. (Componentwise weights might be supported in a future version.)%% Output% output = cssd_cv(...)% output.p: % p: parameter between 0 and 1 that weights the rougness penalty% (high values result in smoother curves)% output.gamma: parameter between 0 and Infinity that weights the discontiuity% penalty (high values result in less discontinuities, gamma = Inf corresponds to a classical smoothing spline% output.cv_score: best cv_score achieved by the optimizer% output.cv_fun: a function handle to the CV scoring function%%   See also CSSDif nargin < 3    folds_cell = {};endif nargin < 4    delta = [];endif nargin < 5    startingPoint = [];endp = inputParser;addOptional(p,'verbose', 0);addOptional(p,'maxTime', Inf);parse(p,varargin{:});verbose = p.Results.verbose;maxTime = p.Results.maxTime;if isempty(delta)    delta = ones(size(x));end% checks arguments and creates column vectors (chckxywp is Matlab built in)% Matlab uses the parameter w which is related to delta of De Boor's book by w = 1./delta.^2w = 1./delta.^2;[xi,yi,~,wi] = chckxywp(x,y,2,w,0);deltai = sqrt(1./wi);[N,D] = size(yi);% create folds if not givenif isempty(folds_cell)    folds_cell = kfoldcv_split(N, 5);endgamma_tf = @(b) atan(b) * 2/pi;gamma_itf = @(a) (tan(a * pi/2));% generate cv score functioncv_fun = @(p, gamma) cssd_cvscore(xi, yi, p, gamma, deltai, folds_cell);cv_fun_vec = @(z) cv_fun(z(1), gamma_itf(z(2))); % vectorised and transformed version for optimization% perform optimizationsaoptions = {@simulannealbnd,'MaxTime', maxTime};options = {};if verbose    saoptions = {saoptions{:},  'Display','iter','PlotFcns', {@saplotbestx,@saplotbestf,@saplotx,@saplotf}};    options = {options{:}, 'Display','iter', 'PlotFcns', {@optimplotx, @optimplotfunccount, @optimplotfval}};end% set starting point of optimizersif isempty(startingPoint)    startingPoint = [0.5; 1]; % starting values: p =0.5, gamma = 1end% transform starting point to lie in the unit square [0,1]^2startingPoint_tf = [startingPoint(1); gamma_tf(startingPoint(2))];% invoke chain of standard derivative-free optimizers on [0,1]^2: simulated% annealing followed by Nelder-Mead simplex downhill[improvedPoint_tf, cv_score] = simulannealbnd(cv_fun_vec, startingPoint_tf, [0;0], [1;1], optimoptions(saoptions{:})); % simulated annealing[improvedPoint_tf, cv_score] = fminsearch(cv_fun_vec, improvedPoint_tf, optimset(options{:})); % refine result of simulated annealing by Nelder Mead downhill% improved p and gammap = improvedPoint_tf(1);gamma = gamma_itf(improvedPoint_tf(2)); % transform gamma back to [0, Inf)% set ouptputoutput.p = p;output.gamma = gamma;output.cv_score = cv_score;output.cv_fun = cv_fun;end

⛄ 运行结果

⛄ 参考文献

M. Storath, A. Weinmann, "Smoothing splines for discontinuous signals", arXiv:2211.12785, 2022

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


相关文章
|
2月前
|
存储 算法 数据可视化
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
83 2
|
1月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
3月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)