目标检测实战(四):YOLOV4-Tiny 源码训练、测试、验证详细步骤

简介: 这篇文章详细介绍了使用YOLOv4-Tiny进行目标检测的实战步骤,包括下载源码和权重文件、配置编译环境、进行简单测试、训练VOC数据集、生成训练文件、准备训练、开始训练以及多GPU训练的步骤。文章还提供了相应的代码示例,帮助读者理解和实践YOLOv4-Tiny模型的训练和测试过程。

下载源码和权重文件

源码:https://github.com/AlexeyAB/darknet
权重:https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights

编译环境

修改makefile(打开darknet目录下makefile文件),
根据具体情况修改

GPU=1        # 使用GPU
CUDNN=1        # 使用GPU
CUDNN_HALF=1        # 混合精度训练,用于加速
OPENCV=1        # 使用opencv
AVX=0
OPENMP=0
LIBSO=1        # 生成libdarknet.so,便于python调用darknet模型
ZED_CAMERA=0
ZED_CAMERA_v2_8=0

#ARCH= -gencode arch=compute_35,code=sm_35 \
#      -gencode arch=compute_50,code=[sm_50,compute_50] \
#      -gencode arch=compute_52,code=[sm_52,compute_52] \
#        -gencode arch=compute_61,code=[sm_61,compute_61]

OS := $(shell uname)

# GeForce RTX 3070, 3080, 3090
# ARCH= -gencode arch=compute_86,code=[sm_86,compute_86]

# Kepler GeForce GTX 770, GTX 760, GT 740
# ARCH= -gencode arch=compute_30,code=sm_30

# Tesla A100 (GA100), DGX-A100, RTX 3080
ARCH= -gencode arch=compute_80,code=[sm_80,compute_80]

# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
NVCC=/usr/local/cuda-11.1/bin/nvcc

然后直接终端进行编译

sudo make

就会在当前文件夹生成libdarknet.so文件。

简单测试

./darknet detector test cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights data/dog.jpg    # 图片测试
./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights -ext_output test.mp4        # 视频测试
./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights -c 0        # 摄像头测试

训练VOC数据集

通过下面代码划分,创建一个data_spilt.py文件和对应的路径

import os
import random

trainval_percent = 0.8  # 所有数据中用来训练的比例 trainval/all  trainval=train+val
train_percent = 1     # trainval用来训练的比例 train/trainval
xmlfilepath = '/home/lqs/Downloads/dataset/VOC/VOC2007/Annotations'
txtsavepath = './VOCdevkit/main'
total_xml = os.listdir(xmlfilepath)

num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)

ftrainval = open(txtsavepath+'/trainval.txt', 'w+')    # 训练集数据+验证集数据
ftest = open(txtsavepath+'/test.txt', 'w+')    # 测试集
ftrain = open(txtsavepath+'/train.txt', 'w+')    # 训练集
fval = open(txtsavepath+'/val.txt', 'w+')    # 验证集

for i  in list:
    name=total_xml[i][:-4]+'\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
print('Finished!')

生成训练文件

修改sets和classes以及里面的关键路径即可,这个代码可自己创建,得到2007_test.txt、2007_train.txt、2007_val.txt三个文件

#---------------------------------------------#
#   运行前一定要修改classes
#   如果生成的2007_train.txt里面没有目标信息
#   那么就是因为classes没有设定正确
#---------------------------------------------#
import xml.etree.ElementTree as ET
from os import getcwd

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
#-----------------------------------------------------#
#   这里设定的classes顺序要和model_data里的txt一样
#-----------------------------------------------------#
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

def convert_annotation(year, image_id, list_file):
    in_file = open('/home/lqs/Downloads/dataset/VOC/VOC%s/Annotations/%s.xml'%(year, image_id), encoding='utf-8')
    tree=ET.parse(in_file)
    root = tree.getroot()

    for obj in root.iter('object'):
        difficult = 0 
        if obj.find('difficult')!=None:
            difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult)==1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text)))
        list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))

wd = getcwd()

for year, image_set in sets:
    image_ids = open('/home/lqs/Downloads/dataset/VOC/VOC%s/ImageSets/Main/%s.txt'%(year, image_set), encoding='utf-8').read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w', encoding='utf-8')
    for image_id in image_ids:
        list_file.write('/home/lqs/Downloads/dataset/VOC%s/JPEGImages/%s.jpg'%(year, image_id))
        convert_annotation(year, image_id, list_file)
        list_file.write('\n')
    list_file.close()

训练准备

  • 修改darknet-master/cfg/voc.data
classes= 20        # 改成自己的类别数
train  = /home/pjreddie/data/2007_train.txt    # 改成voc_label.py生成的2007_train.txt路径
valid  = /home/pjreddie/data/2007_test.txt    # 改成voc_label.py生成的2007_test.txt路径
names = data/voc.names    # 改成有自己类别的names文件
backup = backup/    # 改为backup/即可
  • 修改darknet-master/cfg/yolov4-tiny.cfg
[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=64    # 每64张图片更新一次参数
subdivisions=16    # 64张图片分16次放入显卡中,每次4张。因为一次放入过多会内存不足,根据自己显卡性能更改
width=416    # 将输入的图片resize到width×height后,放入网络中训练
height=416    # 只要是32的倍数即可
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
  • 找到如下位置(以yolo为关键字),修改filters和classes,整个文本共有2个filters和2个classes需要修改
[convolutional]
size=1
stride=1
pad=1
filters=255    # 改为3*(classes +5)。不过官网上不建议这种做法,具体可以查官方github 修改地方不止一处!
activation=linear

[yolo]
mask = 3,4,5
anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
classes=80    # 改为自己的类别数
num=6
jitter=.3
scale_x_y = 1.05
cls_normalizer=1.0
iou_normalizer=0.07

开始训练

在darknet目录下,使用第一条命令生成预训练权重yolov4-tiny.conv.29,第二条命令开始训练

./darknet partial cfg/yolov4-tiny.cfg yolov4-tiny.weights yolov4-tiny.conv.29 29    # 生成yolov4-tiny.conv.29文件,用于迁移学习
./darknet detector train cfg/voc.data cfg/yolov4-tiny.cfg yolov4-tiny.conv.29 -map    # 训练模型
# -map参数可以在训练过程中对测试集计算map并在chart上显示)

Error in load_data_detection() - OpenCV

多GPU训练

./darknet detector train [.data] [.cfg] [.weight] -gpus 0, 1, 2    # 多GPU训练
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
28天前
|
测试技术 持续交付 UED
软件测试的艺术:确保质量的实战策略
在软件开发的舞台上,测试是那把确保每个功能如交响乐般和谐奏响的指挥棒。本文将深入探讨软件测试的重要性、基本类型以及如何设计高效的测试策略。我们将通过一个实际的代码示例,展示如何运用这些策略来提升软件质量和用户体验。
|
4天前
|
算法 数据挖掘 测试技术
犬类癌症检测(CANDiD)研究:使用独立测试集对1000多只犬进行基于高通量测序的多癌种早期检测"液体活检"血液测试的临床验证
这项研究首次在大规模独立测试集上验证了基于NGS的液体活检在犬类多癌种检测中的应用。该方法具有很高的特异性,可以作为一种新的无创癌症筛查和辅助诊断工具。通过早期发现癌症,有望改善犬类癌症的诊断和管理模式。
28 12
|
26天前
|
JavaScript 安全 编译器
TypeScript 与 Jest 测试框架的结合使用,从 TypeScript 的测试需求出发,介绍了 Jest 的特点及其与 TypeScript 结合的优势,详细讲解了基本测试步骤、常见测试场景及异步操作测试方法
本文深入探讨了 TypeScript 与 Jest 测试框架的结合使用,从 TypeScript 的测试需求出发,介绍了 Jest 的特点及其与 TypeScript 结合的优势,详细讲解了基本测试步骤、常见测试场景及异步操作测试方法,并通过实际案例展示了其在项目中的应用效果,旨在提升代码质量和开发效率。
37 6
|
1月前
|
敏捷开发 安全 测试技术
掌握单元测试:确保代码质量的关键步骤
单元测试是确保代码质量、提升可维护性和可靠性的重要手段。本文介绍了单元测试的基本概念、重要性及最佳实践,包括测试驱动开发(TDD)、保持测试独立性、使用断言库和模拟依赖等,旨在帮助开发者掌握单元测试技巧,提高开发效率。
|
1月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
60 3
|
1月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
52 1
|
2天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
27 11
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
74 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
3月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
262 7
Jmeter实现WebSocket协议的接口测试方法
|
3月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
271 3
快速上手|HTTP 接口功能自动化测试
下一篇
DataWorks