监管科技应用之贵州样本:大数据助力防范互金风险

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

5月27日在贵阳结束的“2017中国国际大数据产业博览会”上,21世纪经济报道记者注意到,一些科技手段正成为监管部门的重要辅助。

而贵阳市,正着手联合百度金融等机构,借助人工智能、大数据、机器学习等科技力量打造“贵州金融大脑”,以监管科技对全省金融风险等领域实施并加强持续监测和预警。

实际上,监管科技(RegTech)在金融科技中的关注度正不断升温,且已成应用热门。

除中国人民银行成立金融科技委员会外,包括中国证券投资基金业协会、中国互联网金融协会以及中国支付清算协会也成立了金融科技专委会或相关研究工作组。

中国人民银行科技司司长李伟指出,新技术与金融业务交叉渗透,使金融业态复杂多变,潜在风险不容忽视。央行方面也指出,强化监管科技应用实践,利用大数据、人工智能、云计算等金融监管手段,提升跨行业、跨市场交叉性金融风险的甄别、防范和化解能力。

贵阳市人民政府副市长王玉祥在数博会上介绍,贵阳在去年5月推出了大数据防护金融风险平台,叠加区块链技术的2.0版本将在6月份发布。这一版本可覆盖传统金融和新金融机构,实施政府监管和一些商业化服务。接下来,贵阳还将与专门从事大数据金融风险控制模型的美国SAS公司合作,研发3.0版本的风险防控平台。

在贵州,金融云工程与地方金融风险防范工程均是2017年六大工程之一,而金融云建设与地方金融风险防范密切相关。

联手百度打造“金融大脑”监测系统

按照贵州省对金融云工程的建设设想,将综合运营大数据、云计算、区块链、人工智能等前沿科技,实现政府、金融监管部门、金融机构数据信息的汇聚、打通、应用,降低监管成本,防范化解风险。

目前,其一期工程在政用方面已经实现金融风险监测预警、地方金融审批监管、企业信息查询、打击非法集资举报分析等平台。商用领域则可以实现金融机构的网络舆情数据库、金融政策、金融机构黑名单查询、授信信息查询等资源共享平台。其二期将覆盖地方交易场所、小贷公司、融资担保公司的第三方存管、登记结算以及金融风险动态监测等功能。

贵州金融云三期主要是建设贵州金融大脑,实现对全省金融风险和地方金融机构经营风险的持续监测和预警,提升金融精准服务、服务“三农”和小微企业能力。

在数博会上,由百度金融联合贵州省金融办、大数据局等部门合作推出“贵州金融大脑”亮相。

百度副总裁张旭阳介绍,“贵州金融大脑”以人工智能、大数据、机器学习为技术基础,融合贵州省政务、企业、金融、互联网等多渠道数据,对中小微企业进行画像,金融机构可以此作为参考为中小微企业提供相应的融资服务。

监管科技的应用与威力

百度金融还表示,将继续探索与地方政府大数据合作模式,将科技能力复制到其他地区。

以庞大的地方国资系统为例,国资委过去在管理国企时受人员精力所限,基本只管理到集团一级,而国企集团下属子公司、孙公司层级庞大,难以覆盖。贵州基石数据科技有限公司业务负责人告诉21世纪经济报道记者,通过授权,公司对国有企业数据库中的国企行为信息进行分析和描述,对国企生产经营、改制重组、资产处置、关联交易、招投标过程中等方面的重点监控,如发现企业及关联企业潜在风险,并在事中出现异动在线监控,事后及时监管处置。还可以针对性设置重点关注模块,便于管理部门及时掌握企业动态并作出决策。

基石数据另一业务负责人表示,以互联网金融为例,除工商注册中涉及投资管理的企业外,还有许多公司以科技的名义注册但从事投资咨询事宜,这时就应当对企业在互联网上涉及投资宣传的一并纳入观察企业库,结合法院判决信息、企业工商信息等,多维度共同对互联网金融平台进行风险分级。

目前,新三板市场挂牌企业已达到11250家。一位股转系统负责人感叹,单靠人力已经管不过来,以技术为支撑的大数据监管成为可能,并且已经开始尝试应用。

腾讯云反欺诈平台方面介绍,平台投入无锡市使用近两个月,该市网络诈骗案件涉及的网址链接中,72%的中奖诈骗网址、85%的手机病毒链接、98%的仿冒银行和伪基站网址得到过滤拦截。通过与6省市的公安部门、运营商以及部分通信管理部门合作,平台在全国超过20个城市落地,仿冒公检法类诈骗的总金额下降超过一半。

21世纪经济报道记者在采访中了解到,许多监管部门都已经采用技术手段提升管理能力和水平。不过,背后仍需政府部门的数据打通和监管合力支撑。

一位中部地方国资机构人士表示,贵州作为大数据综合试验区,许多政府部门的数据打通上起到了较好的示范。但由于其所在地区政府部门的数据共享打通缺少顶层设计,部门间割裂比较明显,在大数据等技术支持监管等方面仍有较长的路要走。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
|
4月前
|
存储 监控 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
|
4月前
|
Java 大数据 数据处理
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战(222)
本文探讨了基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战。文章分析了传统制造模式的局限性,介绍了工业互联网带来的机遇,并结合实际案例展示了 Java 在多源数据采集、实时处理及设备协同优化中的关键技术应用。同时,也深入讨论了数据安全、技术架构等挑战及应对策略。
|
4月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
4月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
4月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。

热门文章

最新文章