ODPS SQL问题之为什么使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生改变如何解决

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: ODPS SQL问题之为什么使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生改变如何解决

问题一:odps.sql.groupby.skewindata 参数的作用是什么?

odps.sql.groupby.skewindata 参数的作用是什么?


参考回答:

odps.sql.groupby.skewindata 参数用于优化含有GROUP BY和DISTINCT操作的SQL查询,以应对数据倾斜问题。当设置为true时,系统会根据数据的分布自动调整查询的执行计划,以避免热点数据聚集导致的数据倾斜。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/632186



问题二:为什么使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生改变?

为什么使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生改变?


参考回答:

使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生变化,主要是因为系统会根据数据的倾斜情况自动调整查询的执行策略。例如,在Map阶段可能会增加Hash分区的字段,以避免Reduce阶段的数据倾斜。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/632188



问题三:Sort Merge Join和Broadcast Hash Join的主要区别是什么?

Sort Merge Join和Broadcast Hash Join的主要区别是什么?


参考回答:

Sort Merge Join和Broadcast Hash Join的主要区别在于数据处理方式。Sort Merge Join会将两张表根据join key进行重新分区、排序,然后在每个分区节点上执行merge操作。而Broadcast Hash Join则是将小表广播分发到大表所在的所有节点上,与大表进行hash join操作。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/632189



问题四:什么情况下应该使用Broadcast Hash Join而不是Sort Merge Join?

什么情况下应该使用Broadcast Hash Join而不是Sort Merge Join?


参考回答:

当小表数据量较小,而大表数据量较大时,使用Broadcast Hash Join可能会更有效率。因为Broadcast Hash Join可以避免shuffle和sort操作,减少数据传输和计算资源的使用。但是,如果小表数据量也很大,使用Broadcast Hash Join可能会消耗过多的内存资源,导致性能下降。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/632193



问题五:Distributed Map Join是如何工作的?

Distributed Map Join是如何工作的?


参考回答:

Distributed Map Join将小表数据分片(shard),并在多个节点上构建分布式哈希表。大表的数据则通过网络传输方式将join keys分批次发送到小表所在的节点进行哈希查找。这种方式可以并行处理大量数据,但要求大表数据量远大于小表,以避免网络传输成为性能瓶颈。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/632195

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
10天前
|
SQL 分布式计算 运维
如何对付一个耗时6h+的ODPS任务:慢节点优化实践
本文描述了大数据处理任务(特别是涉及大量JOIN操作的任务)中遇到的性能瓶颈问题及其优化过程。
|
16天前
|
SQL JSON 分布式计算
ODPS SQL ——列转行、行转列这回让我玩明白了!
本文详细介绍了在MaxCompute中如何使用TRANS_ARRAY和LATERAL VIEW EXPLODE函数来实现列转行的功能。
|
11天前
|
SQL 分布式计算 大数据
大数据开发SQL代码编码原则和规范
这段SQL编码原则强调代码的功能完整性、清晰度、执行效率及可读性,通过统一关键词大小写、缩进量以及禁止使用模糊操作如select *等手段提升代码质量。此外,SQL编码规范还详细规定了代码头部信息、字段与子句排列、运算符前后间隔、CASE语句编写、查询嵌套、表别名定义以及SQL注释的具体要求,确保代码的一致性和维护性。
15 0
|
18天前
|
JSON 数据格式 Java
化繁为简的魔法:Struts 2 与 JSON 联手打造超流畅数据交换体验,让应用飞起来!
【8月更文挑战第31天】在现代 Web 开发中,JSON 成为数据交换的主流格式,以其轻量、易读和易解析的特点受到青睐。Struts 2 内置对 JSON 的支持,结合 Jackson 库可便捷实现数据传输。本文通过具体示例展示了如何在 Struts 2 中进行 JSON 数据的序列化与反序列化,并结合 AJAX 技术提升 Web 应用的响应速度和用户体验。
42 0
|
18天前
|
监控 Java 开发者
揭秘Struts 2性能监控:选对工具与方法,让你的应用跑得更快,赢在起跑线上!
【8月更文挑战第31天】在企业级应用开发中,性能监控对系统的稳定运行至关重要。针对流行的Java EE框架Struts 2,本文探讨了性能监控的工具与方法,包括商用的JProfiler、免费的VisualVM以及Struts 2自带的性能监控插件。通过示例代码展示了如何在实际项目中实施这些监控手段,帮助开发者发现和解决性能瓶颈,确保应用在高并发、高负载环境下稳定运行。选择合适的监控工具需综合考虑项目需求、成本、易用性和可扩展性等因素。
25 0
|
18天前
|
Java XML Maven
跨越时代的飞跃:Struts 2 升级秘籍——从旧版本无缝迁移到最新版,焕发应用新生!
【8月更文挑战第31天】随着软件技术的发展,Struts 2 框架也在不断更新。本文通过具体案例指导开发者如何从旧版平滑升级到 Struts 2.6.x。首先更新 `pom.xml` 中的依赖版本,并执行 `mvn clean install`。接着检查 `struts.xml` 配置,确保符合新版本要求,调整包扫描器等设置。审查 Action 类及其注解,检查配置文件中的弃用项及插件。更新自定义拦截器实现,并验证日志配置。最后,通过一系列测试确保升级后的系统正常运行。通过这些步骤,可以顺利完成 Struts 2 的版本升级,提升应用的安全性和性能。
51 0
|
18天前
|
SQL 存储 数据库
|
19天前
|
SQL 数据管理 关系型数据库
SQL与云计算:利用云数据库服务实现高效数据管理——探索云端SQL应用、性能优化、安全性与成本效益,为企业数字化转型提供全方位支持
【8月更文挑战第31天】在数字化转型中,企业对高效数据管理的需求日益增长。传统本地数据库存在局限,而云数据库服务凭借自动扩展、高可用性和按需付费等优势,成为现代数据管理的新选择。本文探讨如何利用SQL和云数据库服务(如Amazon RDS、Google Cloud SQL和Azure SQL Database)实现高效的数据管理。通过示例和最佳实践,展示SQL在云端的应用、性能优化、安全性及成本效益,助力企业提升竞争力。
37 0
|
19天前
|
SQL 关系型数据库 MySQL
SQL性能调优的神奇之处:如何用优化技巧让你的数据库查询飞起来,实现秒级响应?
【8月更文挑战第31天】在现代软件开发中,数据库性能至关重要。本文通过一个实战案例,展示了从慢查询到秒级响应的全过程。通过对查询的详细分析与优化,包括创建索引、改进查询语句及数据类型选择等措施,最终显著提升了性能。文章还提供了示例代码及最佳实践建议,帮助读者掌握SQL性能调优的核心技巧。
34 0
|
19天前
|
SQL 关系型数据库 MySQL
SQL索引构建与优化的神奇之处:如何用高效索引让你的数据检索飞起来?
【8月更文挑战第31天】在现代软件开发中,数据库索引对于提升查询性能至关重要。本文详细介绍了SQL索引的概念、构建方法及优化技巧,包括避免不必要的索引、使用复合索引等策略,并提供了实用的示例代码,如 `CREATE INDEX index_name ON table_name (column_name, another_column_name);`。通过遵循这些最佳实践,如了解查询模式和定期维护索引,可以大幅提高数据检索效率,从而增强应用程序的整体性能。
52 0

热门文章

最新文章