m基于FPGA和IP核的RS编译码verilog实现,包含testbench测试文件

简介: m基于FPGA和IP核的RS编译码verilog实现,包含testbench测试文件

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,测试结果如下:

a820198a0171d499eda280b72c988114_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
4bcc3afbcb2965e9326d41725fd07598_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
在现代通信系统中,为了确保数据传输的可靠性,经常需要使用各种纠错编码技术。其中,里德-所罗门(Reed-Solomon, RS)码是一种非常强大的线性纠错码,特别适用于纠正多个随机符号错误。随着技术的进步,现场可编程门阵列(FPGA)已经成为实现这些编码方案的高效平台。而IP(Intellectual Property)核则是预先设计好的、可在多个设计中重复使用的功能模块,它大大简化了复杂算法在FPGA上的实现过程。以下将详细介绍基于FPGA和IP核的RS编译码原理。

2.1 RS码基本原理
RS编译码,也就是里德-所罗门编译码(Reed-Solomon Encoding),是一种用于错误检测和纠正的算法,广泛应用于通信、数据存储和网络安全等领域。RS编译码是一种基于有限域(finite field)的纠错编码技术。它利用了多项式运算的性质进行编码,通过在原始数据的基础上添加校验位,使得在数据传输或存储过程中发生错误时,可以通过解码过程检测和纠正错误。

  RS编译码的基本原理是将每个信息符号看作是一个多项式的系数,通过将每个符号映射到一个有限域上的元素,从而将纠错问题转化为多项式运算。具体来说,RS编译码通常使用的是二元的m-进制多项式,其中m是一个2的幂次方。例如,对于一个8位二进制数,可以将每个符号映射为一个8次多项式的系数,其中每个系数都取自有限域GF(2^8)。

   RS码是一种非二进制、线性分组码,其码字由有限域(Galois Field, GF)中的元素构成。最常用的有限域是GF(2^m),其中m是一个正整数,表示每个符号的位数。RS码以其发明者Irving S. Reed和Gustave Solomon命名,具有两个关键参数:码长n和消息长度k。RS(n, k)码能够纠正最多t个符号错误,其中t = (n - k) / 2。

2.1.1 编码过程
RS编码是将长度为k的信息位映射为一个长度为n的码字。编码过程中,首先选取一个长度为n-k的生成多项式g(x),然后利用该多项式对信息位进行编码。编码公式如下:

c(x) = m(x) * g(x) mod x^n + 1

其中,m(x)是信息位的多项式,c(x)是编码后的多项式。

RS码的编码过程涉及生成多项式的构建和码字的生成。

生成多项式:对于RS(n, k)码,其生成多项式g(x)是一个次数为t的多项式,形式如下:

(g(x) = (x - \alpha^0) \cdot (x - \alpha^1) \cdot ... \cdot (x - \alpha^{t-1}))

其中,(\alpha)是有限域GF(2^m)中的一个本原元。

消息多项式:原始消息表示为一个次数小于k的多项式m(x)。

编码:编码后的码字c(x)是消息多项式m(x)与生成多项式g(x)的乘积,即:

(c(x) = m(x) \cdot g(x))

编码后的码字c(x)具有n个系数,这些系数构成了发送的码字。

2.1.2 解码与纠错
RS解码是在接收到的码字中检测和纠正错误的过程。解码过程中,首先利用接收到的码字计算出错误位置多项式,然后求解该多项式的根,即可确定错误位置。为了纠正错误,需要构造一个错误纠正多项式,然后根据错误位置进行纠正。解码公式如下:

e(x) = c(x) * h(x) mod x^n + 1

其中,h(x)是伴随多项式,e(x)是错误位置多项式。

   RS码的解码和纠错过程通常使用基于Berlekamp-Massey算法的解码器或更高效的基于欧几里得算法的解码器。这些算法利用接收到的码字和错误定位多项式的知识来定位和纠正错误。

错误定位多项式:该多项式(\sigma(x))的根对应于发生错误的符号位置。

钱氏搜索:一种确定错误值的方法,它涉及到求解一个线性方程组。

福布斯算法:用于计算错误位置多项式和错误值多项式的另一种方法。

2.2 FPGA和IP核在RS编译码中的应用
2.2.1 FPGA的优势
FPGA以其并行处理能力、可重构性和灵活性在实现复杂的纠错编码方案中具有显著优势。这些特性使得FPGA成为高速、高性能通信系统中实现RS编译码的理想选择。

2.2.2 IP核的作用
IP核提供了预先设计好的功能模块,这些模块已经过优化和验证,可以直接在FPGA设计中使用。对于RS编译码这样的复杂算法,使用IP核可以大大缩短开发周期,降低设计复杂度,并提高设计的可靠性。

2.2.3 实现方式
在FPGA上实现RS编译码通常涉及以下几个步骤:

有限域运算:实现GF(2^m)上的加、减、乘和除等基本运算。这些运算通常使用查找表(LUT)或硬件逻辑来实现。

编码器实现:根据选定的RS(n, k)参数,实现生成多项式的构建和编码过程。这通常涉及到状态机和组合逻辑的设计。

解码器实现:实现基于Berlekamp-Massey算法或欧几里得算法的解码器。这包括错误定位多项式、错误值多项式的计算以及错误纠正逻辑的实现。

验证与测试:使用仿真工具和实际硬件对设计进行验证和测试,确保其正确性和性能。

   基于FPGA和IP核的RS编译码实现结合了RS码的强大纠错能力与FPGA的并行处理能力和灵活性。通过使用IP核,可以进一步简化设计过程,提高设计的可靠性和效率。这种实现方式在高速、高性能通信系统中具有广泛的应用前景。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/12/29 22:08:05
// Design Name:
// Module Name: TEST
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TEST;

reg i_clk;
reg i_rst;
wire [7:0]i_din;
wire i_enable;
//编码
wire [7:0]o_enc_dat;
wire o_enc_enable;
wire [7:0]o_enc_dat_err;
wire o_enc_enable_err;
//译码
wire [7:0]o_dec_dat;
wire o_dec_enable;

reg[11:0]frames;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
frames <= 11'd0;
end
else begin
frames <= frames+12'd1;
end
end

assign i_din = (frames>=12'd2 & frames<=12'd211)?frames-1:8'd0;
assign i_enable = (frames>=12'd2 & frames<=12'd211)?1'b1:1'd0;
wire [7:0]o_enc_dat_err;
wire o_enc_enable_err;
tops topsu(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (i_din),
.i_enable (i_enable),
.o_enc_dat (o_enc_dat),//编码out
.o_enc_enable(o_enc_enable),
.o_enc_dat_err (o_enc_dat_err),//编码out+误码
.o_enc_enable_err(o_enc_enable_err),
.o_dec_dat (o_dec_dat),//译码out
.o_dec_enable(o_dec_enable)
);

initial
begin
i_clk=1'b1;
i_rst=1'b1;

1000

i_rst=1'b0;
end
always #5 i_clk=~i_clk;
endmodule
```

相关文章
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
100 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
4月前
|
C语言 芯片 异构计算
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
|
4月前
|
算法 异构计算
FPGA入门(2):Verilog HDL基础语法
FPGA入门(2):Verilog HDL基础语法
31 0
|
1天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
13 1
|
22天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
40 4
|
22天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
47 16
|
26天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
38 3
|
3天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
9 0
|
30天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
30 1

热门文章

最新文章