【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR

简介: 本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。

1.算法仿真效果
本文是之前写的文章:

基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR-CSDN博客

的硬件测试版本。

在系统在仿真版本基础上增加了ila在线数据采集模块,vio在线SNR设置模块,数据源模块。

硬件ila测试结果如下:(完整代码运行后无水印):

vio设置SNR=20db

ebe53a37191953950b4b8d8929357fc6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

将ila硬件测试数据导出,用matlab显示星座图:
731fb961ff2796d4ee6097ce834d9f5d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

vio设置SNR=15db

6d809dddfbeb99878191de336f33ec97_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

将ila硬件测试数据导出,用matlab显示星座图:

d344548c8772c5ee77d833842c9b9c07_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

硬件测试操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
随着通信技术的不断发展,相位调制技术因其高频谱效率和抗干扰能力而广泛应用于无线通信系统中。其中,8PSK(8相位相移键控)作为一种高阶调制方式,具有更高的频谱效率和更强的抗干扰能力,因此备受关注。然而,8PSK调制解调的实现复杂度较高,需要高效的数字信号处理技术。现场可编程门阵列(FPGA)作为一种可编程逻辑器件,具有高度的灵活性和并行处理能力,非常适合实现复杂的数字信号处理算法。

   8PSK调制是一种相位调制方式,其基本原理是通过改变载波的相位来传递信息。在8PSK中,一个符号周期内的相位变化有8种可能的状态,分别对应3个比特的信息。因此,8PSK调制可以看作是一种将3个比特映射到一个符号的映射方式。具体地,假设输入的比特序列为b2b1b0,则对应的8PSK符号可以表示为:

    S(t)=Acos(2πfct+θk) (1)

    其中,A是载波的振幅,fc是载波的频率,θk是第k个符号的相位,k=0,1,...,7。θk的取值由输入的比特序列b2b1b0决定,具体的映射关系如表1所示。

表1:8PSK映射关系

9d471fb91c2455bbb0b5a398d14673fb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其星座图如下所示:

99a0daa816f2fa3edb3b0dd0303f9a84_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序

```module tops_hdw(

input i_clk,
input i_rst,
output reg [3:0] led
);

wire o_msg;

//产生模拟测试数据
signal signal_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.o_bits(o_msg)
);

//设置SNR
wire signed[7:0]o_SNR;
vio_0 your_instance_name (
.clk(i_clk), // input wire clk
.probe_out0(o_SNR) // output wire [7 : 0] probe_out0
);

wire[2:0]o_ISET;
wire signed[15:0]o_I8psk;
wire signed[15:0]o_Q8psk;
wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;
wire signed[31:0]o_mod_T;
wire signed[15:0]o_Nmod_T;
wire signed[31:0]o_modc_R;
wire signed[31:0]o_mods_R;
wire signed[31:0]o_Ifir_R;
wire signed[31:0]o_Qfir_R;
wire [2:0]o_wbits;
wire o_bits;
wire signed[31:0]o_error_num;
wire signed[31:0]o_total_num;
TOPS_8PSK TOPS_8PSK_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.i_SNR (o_SNR),
.i_dat (o_msg),
.o_ISET (o_ISET),
.o_I8psk(o_I8psk),
.o_Q8psk(o_Q8psk),
.o_Ifir_T (o_Ifir_T),
.o_Qfir_T (o_Qfir_T),
.o_mod_T (o_mod_T),
.o_Nmod_T(o_Nmod_T),
.o_modc_R (o_modc_R),
.o_mods_R (o_mods_R),
.o_Ifir_R (o_Ifir_R),
.o_Qfir_R (o_Qfir_R),
.o_wbits(o_wbits),
.o_bits (o_bits),
.o_error_num(o_error_num),
.o_total_num(o_total_num),
.o_flag(o_flag)
);

//ila篇内测试分析模块
ila_1 ila_u (
.clk(i_clk), // input wire clk
.probe0({
o_msg,o_SNR,//9
o_Ifir_T[15:6], o_Qfir_T[15:6],o_Nmod_T[15:6],//36
o_modc_R[27:12],o_mods_R[27:12],o_Ifir_R[27:12],o_Qfir_R[27:12],//64
o_bits,
o_error_num,o_total_num,errflag,//64
o_rec2,o_flag
})
);

endmodule
0sj_030m

```

4.开发板使用说明和如何移植不同的开发板
注意:硬件片内测试是指发射接收均在一个板子内完成,因此不需要定时同步模块。

在本课题中,使用的开发板是:
ce24d3c4447f85703b0197614fefd19d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

如果你的开发板和我的不一样,可以参考代码包中的程序移植方法进行移植:

8329fe71c9361e77ccfa5736f0285364_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
2月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4ASK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文为基于FPGA的4-ASK调制与帧同步系统硬件测试版,采用Verilog实现,包含ILA在线采集与VIO SNR设置模块,支持高斯信道误码统计,适用于通信系统教学与实践。
44 2
|
3月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2FSK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文基于FPGA实现2FSK+帧同步系统,采用Verilog开发,包含Testbench、高斯信道、误码统计及可设置SNR功能。硬件版本新增ILA在线数据采集与VIO在线SNR设置模块,验证调制解调过程。理论部分介绍FSK调制解调原理、功率谱特性及帧同步机制,代码实现FSK信号生成与处理,适合数字通信学习与实践。
116 1
|
5月前
|
数据采集 移动开发 算法
【硬件测试】基于FPGA的QPSK调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现QPSK调制与软解调系统,包含Testbench、高斯信道、误码率统计模块,并支持不同SNR设置。硬件版本新增ILA在线数据采集和VIO在线SNR设置功能,提供无水印完整代码及测试结果。通过VIO分别设置SNR为6dB和12dB,验证系统性能。配套操作视频便于用户快速上手。 理论部分详细解析QPSK调制原理及其软解调实现过程,涵盖信号采样、相位估计、判决与解调等关键步骤。软解调通过概率估计(如最大似然法)提高抗噪能力,核心公式为*d = d_hat / P(d_hat|r[n])*,需考虑噪声对信号点分布的影响。 附Verilog核心程序代码及注释,助力理解与开发。
150 5
|
5月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2ASK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文分享了基于FPGA的2ASK+帧同步系统硬件测试版本,包含ILA数据采集、VIO SNR设置及数据源模块。通过调整SNR(如45dB和10dB),实现对调制解调性能的验证。2ASK调制将数字信号转为二进制码,通过载波振幅变化传输;帧同步用于确定帧起始位置,确保数据正确解调。附带操作视频与核心Verilog代码,便于理解和复现。
151 9
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
8月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
312 74
|
6月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
6月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
121 0
|
9月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
388 69
|
6月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。